Brownian dynamics simulations were employed to investigate the rheological properties and structure of suspensions of rigid spherocylinders, as a model for rodlike colloids. The spherocylinders interacted only through a soft repulsive force that mimicked a hard spherocylinder interaction. The translational and rotational diffusivities of hard spherocylinder suspensions were reproduced. Liquid crystalline phases, including isotropic, nematic, and smectic and solid phases were identified using orientational and hexatic order parameters and pair distribution functions. Typical flow curves observed experimentally for rodlike colloidal suspensions were reproduced in the simulations, with two shear thinning regions that bracketed a viscosity plateau at intermediate Péclet numbers. The transient rheology and structure of suspensions that were nematic at rest exhibited a variety of behaviors that depended on the Péclet number and concentration. Systemwide domains that aligned in and kayaked about the vorticity direction, domains that rotated coherently locally, and layered domains were observed. Oscillations in the order parameter, viscosity, and the first and second normal stress differences were associated with changes in the structure.

1.
Fraden
,
S.
,
G.
Maret
,
D. L. D.
Caspar
, and
R. B.
Meyer
, “
Isotropic-nematic phase transition and angular correlations in isotropic suspensions of tobacco mosaic virus
,”
Phys. Rev. Lett.
63
,
2068
2071
(
1989
).
2.
Klemm
,
D.
,
E. D.
Cranston
,
D.
Fischer
,
M.
Gama
,
S. A.
Kedzior
,
D.
Kralisch
,
F.
Kramer
,
T.
Kondo
,
T.
Lindström
,
S.
Nietzsche
,
K.
Petzold-Welcke
, and
F.
Rauchfuß
, “
Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state
,”
Mater. Today
21
,
720
748
(
2018
).
3.
Hong
,
Y.
,
N. M. K.
Blackman
,
N. D.
Kopp
,
A.
Sen
, and
D.
Velegol
, “
Chemotaxis of nonbiological colloidal rods
,”
Phys. Rev. Lett.
99
,
178103
(
2007
).
4.
Mohraz
,
A.
, and
M. J.
Solomon
, “
Direct visualization of colloidal rod assembly by confocal microscopy
,”
Langmuir
21
,
5298
5306
(
2005
).
5.
Wissbrun
,
K. F.
, “
Rheology of rod-like polymers in the liquid crystalline state
,”
J. Rheol.
25
,
619
662
(
1981
).
6.
Flory
,
P. J.
, “
Phase equilibria in solutions of rod-like particles
,”
Proc. R. Soc. A.
234
,
73
89
(
1956
).
7.
Jeffery
,
G. B.
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. Lond. A
102
,
161
179
(
1922
).
8.
Bretherton
,
F. P.
, “
The motion of rigid particles in a shear flow at low reynolds number
,”
J. Fluid Mech.
14
,
284
304
(
1962
).
9.
Goldsmith
,
H. L.
, and
S. G.
Mason
, “
The flow of suspensions through tubes. I. Single spheres, rods, and discs
,”
J. Colloid Sci.
17
,
448
476
(
1962
).
10.
Cox
,
R. G.
, “
The motion the motion of long slender bodies in a viscous fluid part 1. General theory
,”
J. Fluid Mech.
44
,
791
810
(
1970
).
11.
Cox
,
R. G.
, “
The motion of long slender bodies in a viscous fluid part 2. Shear flow
,”
J. Fluid Mech.
45
,
625
657
(
1971
).
12.
Leal
,
L. G.
, and
E. J.
Hinch
, “
The effect of weak Brownian rotations on particles in shear flow
,”
J. Fluid Mech.
46
,
685
703
(
1971
).
13.
Onogi
,
S.
, and
T.
Asada
, Rheology and rheo-optics of polymer liquid crystals, in Rheology, edited by G. Astarita, G. Marrucci, and L. Nicolais (Plenum, New York, 1980), pp. 127–147.
14.
Asada
,
T.
,
H.
Muramatsu
,
R.
Watanabe
, and
S.
Onogi
, “
Rheooptical studies of racemic poly(g- benzyl glutamate) liquid crystals
,”
Macromolecules
13
,
867
871
(
1980
).
15.
McGrother
,
S. C.
,
D. C.
Williamson
, and
G.
Jackson
, “
A re-examination of the phase diagram of hard spherocylinders
,”
J. Chem. Phys.
104
,
6755
6771
(
1996
).
16.
Van Duijneveldt
,
J. S.
,
A.
Gil-Villegas
,
G.
Jackson
, and
M. P.
Allen
, “
Simulation study of the phase behavior of a primitive model for thermotropic liquid crystals: Rodlike molecules with terminal dipoles and flexible tails
,”
J. Chem. Phys.
112
,
9092
9104
(
2000
).
17.
Cinacchi
,
G.
,
L.
Mederos
, and
E.
Velasco
, “
Liquid-crystal phase diagrams of binary mixtures of hard spherocylinders
,”
J. Chem. Phys.
121
,
3854
3863
(
2004
).
18.
Bolhuis
,
P. G.
,
A.
Stroobants
,
D.
Frenkel
, and
H. N.
Lekkerkerker
, “
Numerical study of the phase behavior of rodlike colloids with attractive interactions
,”
J. Chem. Phys.
107
,
1551
1564
(
1997
).
19.
Nath
,
T.
, and
C.
Heussinger
, “
Rheology in dense assemblies of spherocylinders: Frictional vs frictionless
,”
Eur. Phys. J. E
42
,
1
8
(
2019
).
20.
Kobayashi
,
Y.
,
N.
Arai
, and
A.
Nikoubashman
, “
Structure and dynamics of amphiphilic Janus spheres and spherocylinders under shear
,”
Soft Matter
16
,
476
486
(
2020
).
21.
Brady
,
J.
, and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
157
(
1988
).
22.
Lowen
,
H.
, “
Brownian dynamics of hard spherocylinders
,”
Phys. Rev. E
50
,
1232
1242
(
1994
).
23.
Tao
,
Y. G.
,
W. K.
den Otter
,
J. T.
Padding
,
J. K.
Dhont
, and
W. J.
Briels
, “
Brownian dynamics simulations of the self- and collective rotational diffusion coefficients of rigid long thin rods
,”
J. Chem. Phys.
122
,
244903
(
2005
).
24.
De Souza Lima
,
M. M.
, and
R.
Borsali
, “
Rodlike cellulose microcrystals: Structure, properties, and applications
,”
Macromol. Rapid Commun.
25
,
771
787
(
2004
).
25.
Azizi Samir
,
M. A. S.
,
F.
Alloin
, and
A.
Dufresne
, “
Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field
,”
Biomacromolecules
6
,
612
626
(
2005
).
26.
Habibi
,
Y.
,
L. A.
Lucia
, and
O. J.
Rojas
, “
Cellulose nanocrystals: Chemistry, self-assembly, and applications
,”
Chem. Rev.
110
,
3479
3500
(
2010
).
27.
Eichhorn
,
S. J.
,
A.
Dufresne
,
M.
Aranguren
,
N. E.
Marcovich
,
J. R.
Capadona
,
S. J.
Rowan
,
C.
Weder
,
W.
Thielemans
,
M.
Roman
,
S.
Renneckar
,
W.
Gindl
,
S.
Veigel
,
J.
Keckes
,
H.
Yano
,
K.
Abe
,
M.
Nogi
,
A. N.
Nakagaito
,
A.
Mangalam
,
J.
Simonsen
,
A. S.
Benight
,
A.
Bismarck
,
L. A.
Berglund
, and
T.
Peijs
, “
Review: Current international research into cellulose nanofibres and nanocomposites
,”
J. Mater. Sci.
45
,
1
33
(
2010
).
28.
Moon
,
R. J.
,
A.
Martini
,
J.
Nairn
,
J.
Simonsen
, and
J.
Youngblood
, “
Cellulose nanomaterials review: Structure, properties and nanocomposites
,”
Chem. Soc. Rev.
40
,
3941
3994
(
2011
).
29.
Habibi
,
Y.
,
A. L.
Goffin
,
N.
Schiltz
,
E.
Duquesne
,
P.
Dubois
, and
A.
Dufresne
, “
Bionanocomposites based on poly(e-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization
,”
J. Mater. Chem.
18
,
5002
5010
(
2008
).
30.
Lavoine
,
N.
,
I.
Desloges
,
A.
Dufresne
, and
J.
Bras
, “
Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: A review
,”
Carbohydr. Polym.
90
,
735
764
(
2012
).
31.
Kassab
,
Z.
,
F.
Aziz
,
H.
Hannache
,
H. B.
Youcef
, and
M.
El Achaby
, “
Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals
,”
Int. J. Biol. Macromol.
123
,
1248
1256
(
2019
).
32.
Jardin
,
J. M.
,
Z.
Zhang
,
G.
Hu
,
K. C.
Tam
, and
T. H.
Mekonnen
, “
Reinforcement of rubber nanocomposite thin sheets by percolation of pristine cellulose nanocrystals
,”
Int. J. Biol. Macromol.
152
,
428
436
(
2020
).
33.
Kim
,
J. W.
,
H.
Park
,
G.
Lee
,
Y. R.
Jeong
,
S. Y.
Hong
,
K.
Keum
,
J.
Yoon
,
M. S.
Kim
, and
J. S.
Ha
, “
Paper-like, thin, foldable, and self-healable electronics based on PVA/CNC nanocomposite film
,”
Adv. Funct.
29
,
1
14
(
2019
).
34.
Khalilzadeh
,
M. A.
,
S.
Tajik
,
H.
Beitollahi
, and
R. A.
Venditti
, “
Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@CNC/Cu): Investigation of catalytic activity for the development of a venlafaxine electrochemical sensor
,”
Ind. Eng. Chem. Res.
59
,
4219
4228
(
2020
).
35.
Torstensen
,
J.
,
R. M.
Helberg
,
L.
Deng
,
Ø. W.
Gregersen
, and
K.
Syverud
, “
PVA/nanocellulose nanocomposite membranes for CO2 separation from flue gas
,”
Int. J. Greenhouse Gas Control
81
,
93
102
(
2019
).
36.
Bagheriasl
,
D.
,
P. J.
Carreau
,
B.
Riedl
,
C.
Dubois
, and
W. Y.
Hamad
, “
Shear rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites
,”
Cellulose
23
,
1885
1897
(
2016
).
37.
Bagheriasl
,
D.
,
F.
Safdari
,
P. J.
Carreau
,
C.
Dubois
, and
B.
Riedl
, “
Development of cellulose nanocrystal-reinforced polylactide: A comparative study on different preparation methods
,”
Polym. Compos.
40
,
342
349
(
2019
).
38.
Ishii
,
H.
,
K.
Sugimura
, and
Y.
Nishio
, “
Thermotropic liquid crystalline properties of (hydroxypropyl) cellulose derivatives with butyryl and heptafluorobutyryl substituents
,”
Cellulose
26
,
399
412
(
2019
).
39.
Lagerwall
,
J. P.
,
C.
Schütz
,
M.
Salajkova
,
J.
Noh
,
J. H.
Park
,
G.
Scalia
, and
L.
Bergström
, “
Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films
,”
NPG Asia Mater.
6
,
1
12
(
2014
).
40.
Dong
,
X. M.
,
T.
Kimura
,
J.
Revol
, and
D. G.
Gray
, “
Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites
,”
Langmuir
12
,
2076
2082
(
2002
).
41.
Bercea
,
M.
, and
P.
Navard
, “
Shear dynamics of aqueous suspensions of cellulose whiskers
,”
Macromolecules
33
,
6011
6016
(
2000
).
42.
Shafiei-Sabet
,
S.
,
W. Y.
Hamad
, and
S. G.
Hatzikiriakos
, “
Rheology of nanocrystalline cellulose aqueous suspensions
,”
Langmuir
28
,
17124
17133
(
2012
).
43.
Heggset
,
E. B.
,
G.
Chinga-Carrasco
, and
K.
Syverud
, “
Temperature stability of nanocellulose dispersions
,”
Carbohydr. Polym.
157
,
114
121
(
2017
).
44.
Li
,
M. C.
,
Q.
Wu
,
K.
Song
,
S.
Lee
,
Y.
Qing
, and
Y.
Wu
, “
Cellulose nanoparticles: Structuremorphology-rheology relationships
,”
ACS Sustain. Chem. Eng.
3
,
821
832
(
2015
).
45.
Shafiei-Sabet
,
S.
,
W. Y.
Hamad
, and
S. G.
Hatzikiriakos
, “
Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions
,”
Rheol. Acta
52
,
741
751
(
2013
).
46.
Samyn
,
P.
, and
H.
Taheri
, “
Rheology of fibrillated cellulose suspensions after surface modification by organic nanoparticle deposits
,”
J. Mater. Sci.
51
,
9830
9848
(
2016
).
47.
Moberg
,
T.
,
K.
Sahlin
,
K.
Yao
,
S.
Geng
,
G.
Westman
,
Q.
Zhou
,
K.
Oksman
, and
M.
Rigdahl
, “
Rheological properties of nanocellulose suspensions: Effects of fibril/particle dimensions and surface characteristics
,”
Cellulose
24
,
2499
2510
(
2017
).
48.
Wu
,
Q.
,
Y.
Meng
,
S.
Wang
,
Y.
Li
,
S.
Fu
,
L.
Ma
, and
D.
Harper
, “
Rheological behavior of cellulose nanocrystal suspension: Influence of concentration and aspect ratio
,”
J. Appl. Polym. Sci.
131
,
1
8
(
2014
).
49.
Xu
,
Y.
,
A. D.
Atrens
, and
J. R.
Stokes
, “
Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods
,”
J. Colloid Interface Sci.
496
,
130
140
(
2017
).
50.
Phan-Xuan
,
T.
,
A.
Thuresson
,
M.
Skepö
,
A.
Labrador
,
R.
Bordes
, and
A.
Matic
, “
Aggregation behavior of aqueous cellulose nanocrystals: The effect of inorganic salts
,”
Cellulose
23
,
3653
3663
(
2016
).
51.
Hamad
,
W. Y.
, and
S. G.
Hatzikiriakos
, “
Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions
,”
Cellulose
21
,
3347
3359
(
2014
).
52.
Schmid
,
C. F.
, and
D. J.
Klingenberg
, “
Mechanical flocculation in flowing fiber suspensions
,”
Phys. Rev. Lett.
84
,
290
293
(
2000
).
53.
Switzer
,
L. H.
, and
D. J.
Klingenberg
, “
Rheology of sheared flexible fiber suspensions via fiber-level simulations
,”
J. Rheol.
47
,
759
778
(
2003
).
54.
Eken
,
A. E.
,
E. J.
Tozzi
,
D. J.
Klingenberg
, and
W.
Bauhofer
, “
Combined effects of nanotube aspect ratio and shear rate on the carbon nanotube/polymer composites
,”
Polymer
53
,
4493
4500
(
2012
).
55.
Kim
,
S.
, and
S. J.
Karilla
,
Microhydrodynamics: Principles and Selected Applications
(
Butterworth-Heinemann
,
London
,
1991
).
56.
Sundararajakumar
,
R. R.
, and
D. L.
Koch
, “
Structure and properties of sheared fiber suspensions with mechanical contacts
,”
J. Non-Newton. Fluid
73
,
205
239
(
1997
).
57.
Kubo
,
R.
, “
Fluctuation-dissipation theorem
,”
Rep. Prog. Phys.
29
,
255
284
(
1966
).
58.
Lees
,
A. W.
, and
S. F.
Edwards
, “
The computer study of transport processes under extreme conditions
,”
J. Phys. C: Solid State Phys.
5
,
1921
1928
(
1972
).
59.
Wittenburg
,
J.
, Dynamics of Systems of Rigid Bodies, Leitfäden der Angewandten Mathematik und Mechanik (Teubner, Leipzig, 1977).
60.
Haug
,
E. J.
,
Intermediate Dynamics
(
Prentice Hall
,
Englewood Cliffs
,
1992
).
61.
Ross
,
R. F.
, and
D. J.
Klingenberg
, “
Dynamic simulation of flexible fibers composed of linked rigid bodies
,”
J. Chem. Phys.
106
,
2949
2960
(
1997
).
62.
Bossis
,
G.
, and
J. F.
Brady
, “
The rheology of Brownian suspensions
,”
J. Chem. Phys.
91
,
1866
1874
(
1989
).
63.
Wilson
,
B. T.
, and
D. J.
Klingenberg
, “
A jamming-like mechanism of yield-stress increase caused by addition of nonmagnetizable particles to magnetorheological suspensions
,”
J. Rheol.
61
,
601
611
(
2017
).
64.
Batchelor
,
G. K.
, “
Slender-body theory for particles of arbitrary cross-section in stokes flow
,”
J. Fluid Mech.
44
,
419
440
(
1970
).
65.
Ford
,
G. W.
, “
Rotational Brownian motion of an asymmetric top
,”
Phys. Lett. A
77
,
249
254
(
1981
).
66.
Andrienko
,
D.
, “
Introduction to liquid crystals
,”
J. Mol. Liq.
267
,
520
541
(
2018
).
67.
Houssa
,
M.
,
L. F.
Rull
, and
S. C.
McGrother
, “
Effect of dipolar interactions on the phase behavior of the Gay-Berne liquid crystal model
,”
J. Chem. Phys.
109
,
9529
9542
(
1998
).
68.
Zaluzhnyy
,
I. A.
,
R. P.
Kurta
,
E. A.
Sulyanova
,
O. Y.
Gorobtsov
,
A. G.
Shabalin
,
A. V.
Zozulya
,
A. P.
Menushenkov
,
M.
Sprung
,
A.
Krówczyński
,
E.
Górecka
,
B. I.
Ostrovskii
, and
I. A.
Vartanyants
, “
Structural studies of the bond-orientational order and hexatic-smectic transition in liquid crystals of various compositions
,”
Soft Matter
13
,
3240
3252
(
2017
).
69.
Orts
,
W. J.
,
L.
Godbout
,
R. H.
Marchessault
, and
J. F.
Revol
, “
Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: A small angle neutron scattering study
,”
Macromolecules
31
,
5717
5725
(
1998
).
70.
Bolhuis
,
P.
, and
D.
Frenkel
, “
Tracing the phase boundaries of hard spherocylinders
,”
J. Chem. Phys.
106
,
666
687
(
1997
).
71.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of rod-like macrocolecules in concentrated solution. Part 2
,”
J. Chem. Soc. Faraday II
74
,
918
932
(
1978
).
72.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Cambridge University
,
Cambridge
,
1986
).
73.
Moon
,
R. J.
,
S.
Beck
, and
A. W.
Rudie
, Cellulose nanocrystals—A material with unique properties and many potential applications, in Production and Applications of Cellulose Nanomaterials, edited by M. T. Postek, R. J. Moon, A. W. Rudie, and M. A. Bilodeau (TAPPI, Peachtree Corners, GA, 2013), Chap. 1, pp. 9–12.
74.
Ivanov
,
Y.
,
T. G. M.
van de Ven
, and
S. G.
Mason
, “
Damped oscillations in the viscosity of suspensions of rigid rods. I. Monomodal suspensions
,”
J. Rheol.
26
,
213
230
(
1982
).
You do not currently have access to this content.