In this work, we introduce a comprehensive machine-learning algorithm, namely, a multifidelity neural network (MFNN) architecture for data-driven constitutive metamodeling of complex fluids. The physics-based neural networks developed here are informed by the underlying rheological constitutive models through the synthetic generation of low-fidelity model-based data points. The performance of these rheologically informed algorithms is thoroughly investigated and compared against classical deep neural networks (DNNs). The MFNNs are found to recover the experimentally observed rheology of a multicomponent complex fluid consisting of several different colloidal particles, wormlike micelles, and other oil and aromatic particles. Moreover, the data-driven model is capable of successfully predicting the steady state shear viscosity of this fluid under a wide range of applied shear rates based on its constituting components. Building upon the demonstrated framework, we present the rheological predictions of a series of multicomponent complex fluids made by DNN and MFNN. We show that by incorporating the appropriate physical intuition into the neural network, the MFNN algorithms capture the role of experiment temperature, the salt concentration added to the mixture, as well as aging within and outside the range of training data parameters. This is made possible by leveraging an abundance of synthetic low-fidelity data that adhere to specific rheological models. In contrast, a purely data-driven DNN is consistently found to predict erroneous rheological behavior.

1.
de Souza Mendes
,
P. R.
, “
Thixotropic elasto-viscoplastic model for structured fluids
,”
Soft Matter
7
,
2471
2483
(
2011
).
2.
Colombo
,
J.
, and
E.
Del Gado
, “
Stress localization, stiffening, and yielding in a model colloidal gel
,”
J. Rheol.
58
,
1089
1116
(
2014
).
3.
Gurnon
,
A. K.
, and
N. J.
Wagner
, “
Microstructure and rheology relationships for shear thickening colloidal dispersions
,”
J. Fluid Mech.
769
,
242
276
(
2015
).
4.
Rogers
,
S. A.
,
D.
Vlassopoulos
, and
P. T.
Callaghan
, “
Aging, yielding, and shear banding in soft colloidal glasses
,”
Phys. Rev. Lett.
100
,
128304
(
2008
).
5.
Dimitriou
,
C. J.
, and
G. H.
McKinley
, “
A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid
,”
Soft Matter
10
,
6619
6644
(
2014
).
6.
Gelbart
,
W. M.
, and
A.
Ben-Shaul
, “
The ‘new’ science of ‘complex fluids
,’”
J. Phys. Chem.
100
,
13169
13189
(
1996
).
7.
Vermant
,
J.
, and
M. J.
Solomon
, “
Flow-induced structure in colloidal suspensions
,”
J. Phys. Condens. Matter
17
,
R187
R216
(
2005
).
8.
Masschaele
,
K.
,
J.
Fransaer
, and
J.
Vermant
, “
Flow-induced structure in colloidal gels: Direct visualization of model 2D suspensions
,”
Soft Matter
7
,
7717
7726
(
2011
).
9.
Herschel
,
W. H.
, and
R.
Bulkley
, “
Konsistenzmessungen von Gummi-Benzollösungen
,”
Kolloid Z.
39
,
291
300
(
1926
).
10.
Bingham
,
E. C.
, “
An investigation of the laws of plastic flow
,”
Bull. Bureau Stand.
13
,
309
353
(
1916
).
11.
Gillespie
,
T.
, “
An extension of Goodeve’s impulse theory of viscosity to pseudoplastic systems
,”
J. Colloid Sci.
15
,
219
231
(
1960
).
12.
Bird
,
R. B.
, and
O.
Hassager
, Dynamics of Polymeric Liquids: Fluid mechanics, Dynamics of Polymeric Liquids (Wiley, New York, 1987).
13.
Morrison
,
F. A.
, and
A.
Morrison
, Understanding Rheology, Raymond F. Boyer Library Collection (Oxford University, New York, 2001).
14.
Macosko
,
C. W.
, Rheology: Principles, Measurements, and Applications, Advances in Interfacial Engineering Series (VCH, Weinheim, 1994).
15.
Mezger
,
T. G.
,
The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers
, 2 rev. ed. (
Vincentz Network
,
Hannover
,
2006
).
16.
Heldman
,
R. P.
, and
D. R.
Singh
,
Introduction to Food Engineering
, 5th ed. (
Elsevier
,
Amsterdam
,
2013
).
17.
Coleman
,
P. C.
, and
M. M.
Painter
,
Fundamentals of Polymer Science: An Introductory Text
, 2nd ed. (
Technomic
,
Lancaster, PA
,
1997
).
18.
Bonn
,
D.
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
035005
(
2017
).
19.
Coussot
,
P.
, “
Yield stress fluid flows: A review of experimental data
,”
J. Nonnewton Fluid Mech.
211
,
31
49
(
2014
).
20.
Kim
,
J.-Y.
,
J.-Y.
Song
,
E.-J.
Lee
, and
S.-K.
Park
, “
Rheological properties and microstructures of Carbopol gel network system
,”
Colloid Polym. Sci.
281
,
614
623
(
2003
).
21.
Kaneda
,
I.
, and
A.
Sogabe
, “
Rheological properties of water swellable microgel polymerized in a confined space
,”
Colloids Surf. A
270
,
163
170
(
2005
).
22.
Petekidis
,
G.
,
D.
Vlassopoulos
, and
P.
Pusey
, “
Yielding and flow of sheared colloidal glasses
,”
J. Phys.: Condens. Matter
16
,
S3955
(
2004
).
23.
Ghosh
,
A.
,
G.
Chaudhary
,
J. G.
Kang
,
P. V.
Braun
,
R. H.
Ewoldt
, and
K. S.
Schweizer
, “
Linear and nonlinear rheology and structural relaxation in dense glassy and jammed soft repulsive pNIPAM microgel suspensions
,”
Soft Matter
15
,
1038
1052
(
2019
).
24.
Pellet
,
C.
, and
M.
Cloitre
, “
The glass and jamming transitions of soft polyelectrolyte microgel suspensions
,”
Soft Matter
12
,
3710
3720
(
2016
).
25.
Koumakis
,
N.
,
A.
Pamvouxoglou
,
A. S.
Poulos
, and
G.
Petekidis
, “
Direct comparison of the rheology of model hard and soft particle glasses
,”
Soft Matter
8
,
4271
4284
(
2012
).
26.
Caggioni
,
M.
,
V.
Trappe
, and
P. T.
Spicer
, “
Variations of the Herschel–Bulkley exponent reflecting contributions of the viscous continuous phase to the shear rate-dependent stress of soft glassy materials
,”
J. Rheol.
64
,
413
422
(
2020
).
27.
Hébraud
,
P.
, and
F.
Lequeux
, “
Mode-coupling theory for the pasty rheology of soft glassy materials
,”
Phys. Rev. Lett.
81
,
2934
2937
(
1998
).
28.
Bocquet
,
L.
,
A.
Colin
, and
A.
Ajdari
, “
Kinetic theory of plastic flow in soft glassy materials
,”
Phys. Rev. Lett.
103
,
036001
(
2009
).
29.
Seth
,
J. R.
,
L.
Mohan
,
C.
Locatelli-Champagne
,
M.
Cloitre
, and
R. T.
Bonnecaze
, “
A micromechanical model to predict the flow of soft particle glasses
,”
Nat. Mater.
10
,
838
843
(
2011
).
30.
Helgeson
,
M. E.
,
S. E.
Moran
,
H. Z.
An
, and
P. S.
Doyle
, “
Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions
,”
Nat. Mater.
11
,
344
352
(
2012
).
31.
Mohraz
,
A.
, and
M. J.
Solomon
, “
Orientation and rupture of fractal colloidal gels during start-up of steady shear flow
,”
J. Rheol.
49
,
657
681
(
2005
).
32.
Hsiao
,
L. C.
,
R. S.
Newman
,
S. C.
Glotzer
, and
M. J.
Solomon
, “
Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
16029
16034
(
2012
).
33.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions
,”
J. Rheol.
45
,
1205
1222
(
2001
).
34.
Cipelletti
,
L.
,
S.
Manley
,
R. C.
Ball
, and
D. A.
Weitz
, “
Universal aging features in the restructuring of fractal colloidal gels
,”
Phys. Rev. Lett.
84
,
2275
2278
(
2000
).
35.
Zia
,
R. N.
,
B. J.
Landrum
, and
W. B.
Russel
, “
A micro-mechanical study of coarsening and rheology of colloidal gels: Cage building, cage hopping, and Smoluchowski’s ratchet
,”
J. Rheol.
58
,
1121
1157
(
2014
).
36.
Landrum
,
B. J.
,
W. B.
Russel
, and
R. N.
Zia
, “
Delayed yield in colloidal gels: Creep, flow, and re-entrant solid regimes
,”
J. Rheol.
60
,
783
807
(
2016
).
37.
Chu
,
H. C. W.
, and
R. N.
Zia
, “
Active microrheology of hydrodynamically interacting colloids: Normal stresses and entropic energy density
,”
J. Rheol.
60
,
755
781
(
2016
).
38.
Jamali
,
S.
,
G. H.
McKinley
, and
R. C.
Armstrong
, “
Microstructural rearrangements and their rheological implications in a model thixotropic elastoviscoplastic fluid
,”
Phys. Rev. Lett.
118
,
048003
(
2017
).
39.
Boromand
,
A.
,
S.
Jamali
, and
J. M.
Maia
, “
Structural fingerprints of yielding mechanisms in attractive colloidal gels
,”
Soft Matter
13
,
458
473
(
2017
).
40.
Kim
,
J.
,
D.
Merger
,
M.
Wilhelm
, and
M. E.
Helgeson
, “
Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear
,”
J. Rheol.
58
,
1359
1390
(
2014
).
41.
Gao
,
Y.
,
J.
Kim
, and
M. E.
Helgeson
, “
Microdynamics and arrest of coarsening during spinodal decomposition in thermoreversible colloidal gels
,”
Soft Matter
11
,
6360
6370
(
2015
).
42.
Min Kim
,
J.
,
A. P. R.
Eberle
,
A.
Kate Gurnon
,
L.
Porcar
, and
N. J.
Wagner
, “
The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)
,”
J. Rheol.
58
,
1301
1328
(
2014
).
43.
Solomon
,
M. J.
, and
P. T.
Spicer
, “
Microstructural regimes of colloidal rod suspensions, gels, and glasses
,”
Soft Matter
6
,
1391
1400
(
2010
).
44.
Dibble
,
C. J.
,
M.
Kogan
, and
M. J.
Solomon
, “
Structure and dynamics of colloidal depletion gels: Coincidence of transitions and heterogeneity
,”
Phys. Rev. E
74
,
041403
(
2006
).
45.
Furst
,
E. M.
, and
J. P.
Pantina
, “
Yielding in colloidal gels due to nonlinear microstructure bending mechanics
,”
Phys. Rev. E
75
,
050402
(
2007
).
46.
Johnson
,
L. C.
,
B. J.
Landrum
, and
R. N.
Zia
, “
Yield of reversible colloidal gels during flow start-up: Release from kinetic arrest
,”
Soft Matter
14
,
5048
5068
(
2018
).
47.
Johnson
,
L. C.
,
R. N.
Zia
,
E.
Moghimi
, and
G.
Petekidis
, “
Influence of structure on the linear response rheology of colloidal gels
,”
J. Rheol.
63
,
583
608
(
2019
).
48.
Lin
,
N. Y. C.
,
B. M.
Guy
,
M.
Hermes
,
C.
Ness
,
J.
Sun
,
W. C. K.
Poon
, and
I.
Cohen
, “
Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,”
Phys. Rev. Lett.
115
,
228304
(
2015
).
49.
Berret
,
J.-F.
, “Rheology of wormlike micelles: Equilibrium properties and shear banding transition,” arXiv:0406681 [cond-mat] (2004).
50.
Rothstein
,
J. P.
, “
Transient extensional rheology of wormlike micelle solutions
,”
J. Rheol.
47
,
1227
1247
(
2003
).
51.
Padding
,
J. T.
,
E. S.
Boek
, and
W. J.
Briels
, “
Rheology of wormlike micellar fluids from Brownian and molecular dynamics simulations
,”
J. Phys.: Condens. Matter
17
,
S3347
S3353
(
2005
).
52.
Padding
,
J. T.
,
E. S.
Boek
, and
W. J.
Briels
, “
Dynamics and rheology of wormlike micelles emerging from particulate computer simulations
,”
J. Chem. Phys.
129
,
074903
(
2008
).
53.
Padding
,
J. T.
,
W. J.
Briels
,
M. R.
Stukan
, and
E. S.
Boek
, “
Review of multi-scale particulate simulation of the rheology of wormlike micellar fluids
,”
Soft Matter
5
,
4367
4375
(
2009
).
54.
Zhao
,
Y.
,
S. J.
Haward
, and
A. Q.
Shen
, “
Rheological characterizations of wormlike micellar solutions containing cationic surfactant and anionic hydrotropic salt
,”
J. Rheol.
59
,
1229
1259
(
2015
).
55.
Larson
,
R. G.
, “
Constitutive equations for thixotropic fluids
,”
J. Rheol.
59
,
595
611
(
2015
).
56.
Jamali
,
S.
,
R. C.
Armstrong
, and
G. H.
McKinley
, “
Multiscale nature of thixotropy and rheological hysteresis in attractive colloidal suspensions under shear
,”
Phys. Rev. Lett.
123
,
248003
(
2019
).
57.
Jamali
,
S.
,
R. C.
Armstrong
, and
G. H.
McKinley
, “
Time-rate-transformation framework for targeted assembly of short-range attractive colloidal suspensions
,”
Mater. Today Adv.
5
,
100026
(
2020
).
58.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
,
018304
(
2013
).
59.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147-148
,
214
227
(
2009
).
60.
de Souza Mendes
,
P. R.
, and
R. L.
Thompson
, “
A critical overview of elasto-viscoplastic thixotropic modeling
,”
J. Nonnewton Fluid Mech.
187-188
,
8
15
(
2012
).
61.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
Quantitative nonlinear thixotropic model with stretched exponential response in transient shear flows
,”
J. Rheol.
60
,
1301
1315
(
2016
).
62.
Coussot
,
P.
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Viscosity bifurcation in thixotropic, yielding fluids
,”
J. Rheol.
46
,
573
589
(
2002
).
63.
Goodeve
,
C. F.
, and
G. W.
Whitfield
, “
The measurement of thixotropy in absolute units
,”
Trans. Faraday Soc.
34
,
511
520
(
1938
).
64.
Janes
,
K. A.
, and
M. B.
Yaffe
, “
Data-driven modelling of signal-transduction networks
,”
Nat. Rev. Mol. Cell Biol.
7
,
820
828
(
2006
).
65.
Solomatine
,
D. P.
, and
A.
Ostfeld
, “
Data-driven modelling: Some past experiences and new approaches
,”
J. Hydroinf.
10
,
3
22
(
2008
).
66.
Solomatine
,
D.
,
L.
See
, and
R.
Abrahart
, Data-driven modelling: Concepts, approaches and experiences, in Practical Hydroinformatics (Springer, Berlin), pp. 17–30.
67.
Bishop
,
C.
,
Pattern Recognition and Machine Learning
(
Springer
,
New York
,
2006
), p.
738
.
68.
Brunton
,
S. L.
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
69.
Chang
,
W.
,
X.
Chu
,
A. F. B.
S. Fareed
,
S.
Pandey
,
J.
Luo
,
B.
Weigand
, and
E.
Laurien
, “
Heat transfer prediction of supercritical water with artificial neural networks
,”
Appl. Therm. Eng.
131
,
815
824
(
2018
).
70.
Mahmoudabadbozchelou
,
M.
,
A.
Eghtesad
,
S.
Jamali
, and
H.
Afshin
, “
Entropy analysis and thermal optimization of nanofluid impinging jet using artificial neural network and genetic algorithm
,”
Int. Commun. Heat Mass Transfer
119
,
104978
(
2020
).
71.
Mohanraj
,
M.
,
S.
Jayaraj
, and
C.
Muraleedharan
, “
Applications of artificial neural networks for thermal analysis of heat exchangers—A review
,”
Int. J. Therm. Sci.
90
,
150
172
(
2015
).
72.
Mahmoudabadbozchelou
,
M.
,
N.
Rabiei
, and
M.
Bazargan
, “
Numerical and experimental investigation of the optimization of vehicle speed and inter-vehicle distance in an automated highway car platoon to minimize fuel consumption
,”
SAE Int. J. CAV
1
,
3
12
(
2018
).
73.
Rabault
,
J.
,
J.
Kolaas
, and
A.
Jensen
, “
Performing particle image velocimetry using artificial neural networks: A proof-of-concept
,”
Meas. Sci. Technol.
28
,
125301
(
2017
).
74.
Eghtesad
,
A.
,
M.
Mahmoudabadbozchelou
, and
H.
Afshin
, “
Heat transfer optimization of twin turbulent sweeping impinging jets
,”
Int. J. Therm. Sci.
146
,
106064
(
2019
).
75.
Xie
,
G.
,
B.
Sunden
,
Q.
Wang
, and
L.
Tang
, “
Performance predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tube-diameter and large tube-row by artificial neural networks
,”
Int. J. Heat Mass Transfer
52
,
2484
2497
(
2009
).
76.
Sirignano
,
J.
, and
K.
Spiliopoulos
, “
DGM: A deep learning algorithm for solving partial differential equations
,”
J. Comput. Phys.
375
,
1339
1364
(
2018
).
77.
Poplin
,
R.
,
A. V.
Varadarajan
,
K.
Blumer
,
Y.
Liu
,
M. V.
McConnell
,
G. S.
Corrado
,
L.
Peng
, and
D. R.
Webster
, “
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
,”
Nat. Biomed. Eng.
2
,
158
164
(
2018
).
78.
Kim
,
B.
,
V. C.
Azevedo
,
N.
Thuerey
,
T.
Kim
,
M.
Gross
, and
B.
Solenthaler
, “
Deep fluids: A generative network for parameterized fluid simulations
,”
Comput. Graph. Forum
38
,
59
70
(
2019
).
79.
Geneva
,
N.
, and
N.
Zabaras
, “
Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks
,”
J. Comput. Phys.
383
,
125
147
(
2019
).
80.
Lu
,
D.
,
M.
Heisler
,
S.
Lee
,
G.
Ding
,
M. V.
Sarunic
, and
M. F.
Beg
, “Retinal fluid segmentation and detection in optical coherence tomography images using fully convolutional neural network,” arXiv:1710.04778 (2017).
81.
Murata
,
T.
,
K.
Fukami
, and
K.
Fukagata
, “
Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
,”
J. Fluid Mech.
882
,
A13
(
2020
).
82.
Rashno
,
A.
,
D. D.
Koozekanani
, and
K. K.
Parhi
, OCT fluid segmentation using graph shortest path and convolutional neural network*, in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, New York, 2018), pp. 3426–3429.
83.
Smith
,
C.
,
J.
Doherty
, and
Y.
Jin
, “Multi-objective evolutionary recurrent neural network ensemble for prediction of computational fluid dynamic simulations,” in 2014 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, 2014), pp. 2609–2616.
84.
Liao
,
C.
,
K.
Wang
,
M.
Yu
, and
W.
Chen
, “Modeling of magneto-rheological fluid damper employing recurrent neural networks,” in 2005 International Conference on Neural Networks and Brain (IEEE, New York, 2005), Vol. 2, pp. 616–620.
85.
Raissi
,
M.
,
P.
Perdikaris
, and
G.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
86.
Meng
,
X.
,
Z.
Li
,
D.
Zhang
, and
G. E.
Karniadakis
, “PPINN: Parareal physics-informed neural network for time-dependent PDEs,” arXiv:1909.10145 (2019), pp. 1–17.
87.
Meng
,
X.
, and
G. E.
Karniadakis
, “
A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems
,”
J. Comput. Phys.
401
,
109020
(
2020
).
88.
Pang
,
G.
,
L.
Lu
, and
G. E.
Karniadakis
, “
fPINNs: Fractional physics-informed neural networks
,”
SIAM J. Sci. Comput.
35
,
225
253
(
2018
).
89.
Pang
,
G.
,
M.
D’Elia
,
M.
Parks
, and
G. E.
Karniadakis
, “nPINNs: Nonlocal physics-informed neural networks for a parametrized nonlocal universal laplacian operator. Algorithms and applications,” arXiv:2004.04276 (2020).
90.
Lu
,
L.
,
P.
Jin
, and
G. E.
Karniadakis
, “DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators,” arXiv:1910.03193 (2019), pp. 1–22.
91.
Lu
,
L.
,
X.
Meng
,
Z.
Mao
, and
G. E.
Karniadakis
, “DeepXDE: A deep learning library for solving differential equations,” arXiv:1907.04502 (2019), pp. 1–17.
92.
Wang
,
J. X.
,
J. L.
Wu
, and
H.
Xiao
, “
Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
,”
Phys. Rev. Fluids
2
,
1
22
(
2017
).
93.
Wu
,
J. L.
,
H.
Xiao
, and
E.
Paterson
, “
Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
,”
Phys. Rev. Fluids
7
,
1
28
(
2018
).
94.
Swischuk
,
R.
,
L.
Mainini
,
B.
Peherstorfer
, and
K.
Willcox
, “
Projection-based model reduction: Formulations for physics-based machine learning
,”
Comput. Fluids
179
,
704
717
(
2019
).
95.
Jia
,
X.
,
J.
Willard
,
A.
Karpatne
,
J. S.
Read
,
J. A.
Zwart
,
M.
Steinbach
, and
V.
Kumar
, “Physics-guided machine learning for scientific discovery: An application in simulating lake temperature profiles,” arXiv:2001.11086 (2020), pp. 1–25.
96.
Rackauckas
,
C.
,
Y.
Ma
,
J.
Martensen
,
C.
Warner
,
K.
Zubov
,
R.
Supekar
,
D.
Skinner
, and
A.
Ramadhan
, “Universal differential equations for scientific machine learning,” arXiv:2001.04385 (2020).
97.
Piazza
,
R.
, and
G. D.
Pietro
, “
Phase separation and gel-like structures in mixtures of colloids and surfactant
,”
Europhys. Lett.
28
,
445
450
(
1994
).
98.
Petekidis
,
G.
,
L.
Galloway
,
S.
Egelhaaf
,
M.
Cates
, and
W.
Poon
, “
Mixtures of colloids and wormlike micelles: Phase behavior and kinetics
,”
Langmuir
18
,
4248
4257
(
2002
).
99.
Fernández-Godino
,
M. G.
,
C.
Park
,
N.-H.
Kim
, and
R. T.
Haftka
, “Review of multi-fidelity models,” arXiv:1609.07196 (2016).
100.
Zhang
,
D.
,
L.
Lu
,
L.
Guo
, and
G. E.
Karniadakis
, “
Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
,”
J. Comput. Phys.
397
,
108850
(
2019
).
101.
Foody
,
G. M.
, and
M. K.
Arora
, “
An evaluation of some factors affecting the accuracy of classification by an artificial neural network
,”
Int. J. Remote Sens.
18
,
799
810
(
1997
).
You do not currently have access to this content.