We found an anomalous nonlinear behavior under large amplitude oscillatory shears, where the amplitude stress deviates strongly from the linear dependence of strain, while the time dependence of stress remains sinusoidal. This phenomenon is usually accompanied with the Payne effect of filled rubbers. In order to understand the molecular details regarding this unusual behavior, we examined a series of polybutadiene/tetradecane solutions filled with carbon black. Our results show that there is a previously unrecognized transition in the system as the matrix polymer concentration ϕ approaches and passes through a characteristic polymer concentration ϕc. Below ϕc, the system typically shows the classic nonlinearity, where the storage modulus G′ decreases as the strain amplitude γ0 increases and the resulting stress waveforms are distorted from sinusoidal waves. Above ϕc, the system displays an anomalous nonlinearity, where the stress responses at any given strain remain surprisingly sinusoidal regardless of the drop in the storage modulus G′. The critical concentration ϕc is about an order of magnitude greater than the entanglement polymer concentration ϕe. The degree of entanglement in the matrix apparently determines the occurrence of this unusual rheological event and plays a key role here. Increasing the polymer molecular weight enhances this transition.

1.
Davis
,
C. C.
, and
J. T.
Blake
,
The Chemistry and Technology of Rubber
(
Reinhold
,
New York
,
1937
).
2.
Blow
,
C. M.
,
Rubber Technology and Manufacture
(
Butterworth
,
London
,
1971
).
3.
Morton
,
M.
,
Rubber Technology
(
Krieger
,
Malabar
,
FL
,
1981
).
4.
Payne
,
A. R.
, “
A note on the existence of a yield point in the dynamic modulus of loaded vulcanizates
,”
J. Appl. Polym. Sci.
3
,
127
(
1960
).
5.
Payne
,
A. R.
, “
The dynamic properties of carbon black-loaded natural rubber vulcanizates
,”
J. Appl. Polym. Sci.
6
,
57
63
(
1962
).
6.
Payne
,
A. R.
, in
Reinforcement of Elastomers
, edited by
G.
Kraus
(
Wiley Interscience
,
New York
,
1965
), Chap. 3.
7.
Robertson
,
C. G.
, and
X.
Wang
, “
Isoenergetic jamming transition in particle filled systems
,”
Phys. Rev. Lett.
95
,
075703
(
2005
).
8.
Wang
,
X.
, and
C. G.
Robertson
, “
Strain-induced nonlinearity of filled rubbers
,”
Phys. Rev. E.
72
,
031406
(
2005
).
9.
Wang
,
X.
, and
M.
Rackaitis
, “
Fluctuations and critical phenomena of a filled elastomer under deformation
,”
Europhys. Lett.
75
,
590
596
(
2006
).
10.
Robertson
,
C. G.
, and
X.
Wang
, “
Spectral hole burning to probe the nature of unjamming (Payne effect) in particle-filled elastomers
,”
Europhys. Lett.
76
(
2
),
278
284
(
2006
).
11.
Wang
,
X.
, and
C. G.
Robertson
, “
A new spectral memory of filled rubbers
,”
J. Polym. Sci. Part B Polym. Phys.
48
,
859
869
(
2010
).
12.
Randall
,
A. M.
, and
C. G.
Robertson
, “
Linear-nonlinear dichotomy of the rheological response of particle-filled polymers
,”
J. Appl. Polym. Sci.
131
(
19
),
5829
5836
(
2014
).
13.
Li
,
S.
,
Y.
Mi
, and
X.
Wang
, “
Superposed nonlinear rheological behavior in filled elastomers
,”
J. Rheol.
61
(
3
),
409
425
(
2017
).
14.
Wang
,
L.
,
W.
Xiong
, and
X.
Wang
, “
Filled rubbers manifesting superposed nonlinear viscoelasticity
,”
Ann. Trans. Nordic Rheol. Soc.
25
,
277
282
(
2017
).
15.
Xiong
,
W.
, and
X.
Wang
, “
Linear-nonlinear dichotomy of rheological responses in particle-filled polymer melts
,”
J. Rheol.
62
(
1
),
171
181
(
2018
).
16.
Chazeau
,
L.
,
J. D.
Brown
,
L. C.
Yanyo
, and
S. S.
Sternstein
, “
Modulus recovery kinetics and other insights into the Payne effect for filled elastomers
,”
Polym. Compos.
21
,
202
222
(
2000
).
17.
Heinrich
,
G.
, and
M.
Klüppel
, “
Recent advances in the theory of filler networking in elastomers
,”
Adv. Polym. Sci.
160
,
1
44
(
2002
).
18.
Leblanc
,
J. L.
, “
Large amplitude oscillatory shear experiments to investigate the nonlinear viscoelastic properties of highly loaded carbon black rubber compounds without curatives
,”
J. Appl. Poly. Sci.
109
,
1271
1293
(
2008
).
19.
Atul Narayan
,
S. P.
, and
L. I.
Palade
, “
Comparison of a natural configuration approach and a structural parameter approach to model the Payne effect
,”
Acta Mech.
231
,
4981
4802
(
2020
).
20.
Roland
,
C. M.
,
Viscoelastic Behavior of Rubbery Materials
(
Oxford University
,
New York
,
2011
), Chap. 5.
21.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
(
Wiley
,
New York
,
1980
).
22.
Kunde
,
M. C.
, and
R. S.
Jangid
, “
Seismic behavior of isolated bridges: A-state-of-the-art review
,”
Electron. J. Struct. Eng.
3
,
140
170
(
2003
).
23.
Taylor
,
D. P.
, “
History, design, and applications of fluid dampers in structural engineering
,” in
Passive Structural Control Symposium
,
Tokyo Institute of Technology
,
Tokyo, Japan
, 13–14 December
2002
.
24.
Saemann
,
E.-U.
, “
Contribution of the tyre to further lowering tyre-road noise
,”
J. Acoust. Soc. Am.
123
(
5
),
3867
3867
(
2008
).
25.
Wang
,
Y.-C.
,
S.
Gunasekaran
, and
A. J.
Giacomin
, “
The lodge rubberlike liquid behavior for cheese in large amplitude oscillatory shear
,”
Appl. Rheol.
11
(
6
),
312
319
(
2001
).
26.
Mendes
,
P. R. D. S.
,
R. L.
Thompson
,
A. A.
Alicke
, and
R. T.
Leite
, “
The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter
,”
J. Rheol.
58
,
537
561
(
2014
).
27.
Raju
,
V. R.
,
E. V.
Menezes
,
G.
Marin
,
W. W.
Graessley
, and
L. J.
Fetters
, “
Concentration and molecular weight dependence of viscoelastic properties in linear and star polymers
,”
Macromolecules
14
,
1668
1676
(
1981
).
28.
Carella
,
J. M.
,
W. W.
Graessley
, and
L. J.
Fetters
, “
Effects of chain microstructure on the viscoelastic properties of linear polymer melts: Polybutadienes and hydrogenated polybutadienes
,”
Macromolecules
17
,
2775
2786
(
1984
).
29.
Milner
,
S. T.
, “
Predicting the tube diameter in melts and solutions
,”
Macromolecules
38
,
4929
4939
(
2005
).
30.
Heo
,
Y.
, and
R. G.
Larson
, “
The scaling of zero-shear viscosities of semidilute polymer solutions with concentration
,”
J. Rheol.
49
(
5
),
1117
1128
(
2005
).
31.
Heo
,
Y.
, and
R. G.
Larson
, “
Universal scaling of linear and nonlinear rheological properties of semidilute and concentrated polymer solutions
,”
Macromolecules
41
,
8903
8915
(
2008
).
32.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
33.
Ewoldt
,
R.
,
A.
Hosoi
, and
G.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
34.
Rogers
,
S. A.
,
B. M.
Erwin
,
D.
Vlassopoulos
, and
M.
Cloitre
, “
A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid
,”
J. Rheol.
55
(
2
),
435
458
(
2011
).
35.
Rogers
,
S. A.
, and
M. P.
Lettinga
, “
A sequence of physical processes determined and quantified in LAOS: Application to theoretical nonlinear models
,”
J. Rheol.
56
(
1
),
1
25
(
2012
).
36.
Rogers
,
S. A.
, “
A sequence of physical processes determined and quantified in LAOS: An instantaneous local 2D/3D approach
,”
J. Rheol.
56
(
5
),
1129
1151
(
2012
).
37.
Liu
,
A. J.
, and
S. R.
Nagel
, “
Nonlinear dynamics: Jamming is not just cool any more
,”
Nature
396
,
21
22
(
1998
).
38.
Trappe
,
V.
,
V.
Prasad
,
L.
Cipelletti
,
P. N.
Segre
, and
D. A.
Weitz
, “
Jamming phase diagram for attractive particles
,”
Nature
411
,
772
775
(
2001
).
39.
Wyart
,
B. F.
, and
P. G.
de Gennes
, “
Viscosity at small scales in polymer melts
,”
Eur. Phys. J. E
1
,
93
97
(
2000
).
40.
Payne
,
A. R.
, “
Study of carbon black structures in rubber
,”
Rubber Chem. Technol.
38
,
387
399
(
1965
).
41.
Warasitthinon
,
N.
,
A.-C.
Genix
,
M.
Sztucki
,
J.
Oberdisse
, and
C. G.
Robertson
, “
The Payne effect: Primarily polymer-related or filler-related phenomenon?
,”
Rubber Chem. Technol.
92
,
599
611
(
2019
).
42.
Colby
,
R. H.
, and
M.
Rubinstein
, “
Two-parameter scaling for polymers in solvents
,”
Macromolecules
23
(
10
),
2753
2757
(
1990
).
43.
Xiong
,
W.
, and
X.
Wang
, “
Nonlinear responses of carbon black-filled polymer solutions to forced oscillatory shear
,”
J. Non-Newton Fluid
282
,
104319
(
2020
).
44.
Joanny
,
J. F.
,
L.
Leibler
, and
P. G.
de Gennes
, “
Effects of polymer solutions on colloid stability
,”
J. Polym. Sci. Polym. Phys. Ed.
17
,
1073
1084
(
1979
).
45.
de Dennes
,
P. G.
, “
Polymer solutions near an interface. 1. Adsorption and depletion layers
,”
Macromolecules
14
,
1637
1644
(
1981
).
You do not currently have access to this content.