This study sheds light on the effect of nitrogen (N) doping of carbon nanotubes (CNTs) on medium-amplitude oscillatory shear (MAOS) response of CNT/polyvinylidene fluoride (PVDF) nanocomposites within a rheologically percolated concentration regime. Custom-synthesized CNTs without and with nitrogen heteroatom (at a nitrogen atomic percent of 3.85 at. %) were incorporated into a PVDF matrix using a miniature melt-mixer at different concentrations. In both cases, as confirmed by TEM investigations, a nanoscopic state of dispersion in the PVDF matrix was achievable using the applied melt mixing procedure. Our results indicated that N-doped nanocomposites, well below their electrical percolation, form a hybrid, load-bearing network structure where network interconnectivity is driven by N-doped CNT domains and near-surface regions of the PVDF phase. This hybrid network formation behavior combined with N-doped CNTs inferior aspect ratio and their higher susceptibility to breakage and length loss during the melt mixing process have led to delayed electrical percolation. In contrast, localized clustering and contact aggregation in a submicrometer scale was the dominant mode of network formation in the undoped CNT/PVDF nanocomposites. These microstructural inferences were further validated in the frame of molecular simulations and optical microscopy investigations.

1.
Dresselhaus
,
G.
, and
S.
Riichiro
,
Physical Properties of Carbon Nanotubes
(
Imperial College Press
,
London
,
1998
).
2.
Fujisawa
,
K.
,
T.
Hayashi
,
M.
Endo
,
M.
Terrones
,
J. H.
Kim
, and
Y. A.
Kim
, “
Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes
,”
Nanoscale
10
,
12723
12733
(
2018
).
3.
Kang
,
D.
,
N.
Park
,
J.
Ko
,
E.
Bae
, and
W.
Park
, “
Oxygen-induced p-type doping of a long individual single-walled carbon nanotube
,”
Nanotechnology
16
,
1048
1052
(
2005
).
4.
Ketolainen
,
T.
,
V.
Havu
,
E. Ö.
Jónsson
, and
M. J.
Puska
, “
Electronic transport properties of carbon-nanotube networks: The effect of nitrate doping on intratube and intertube conductances
,”
Phys. Rev. Appl.
9
,
34010
34023
(
2018
).
5.
Czerw
,
R.
,
M.
Terrones
,
J.-C.
Charlier
,
X.
Blase
,
B.
Foley
,
R.
Kamalakaran
,
N.
Grobert
,
H.
Terrones
,
D.
Tekleab
, and
P. M.
Ajayan
, “
Identification of electron donor states in N-doped carbon nanotubes
,”
Nano Lett.
1
,
457
460
(
2001
).
6.
Kang
,
H. S.
, and
S.
Jeong
, “
Nitrogen doping and chirality of carbon nanotubes
,”
Phys. Rev. B
70
,
233411
233415
(
2004
).
7.
Nemilentsau
,
A. M.
,
M. V.
Shuba
,
G. Y.
Slepyan
,
P. P.
Kuzhir
,
S. A.
Maksimenko
,
P. N.
D’yachkov
, and
A.
Lakhtakia
, “
Substitutional doping of carbon nanotubes to control their electromagnetic characteristics
,”
Phys. Rev. B
82
,
235424
235434
(
2010
).
8.
Barzegar
,
H. R.
,
E.
Gracia-Espino
,
T.
Sharifi
,
F.
Nitze
, and
T.
Wågberg
, “
Nitrogen doping mechanism in small diameter single-walled carbon nanotubes: Impact on electronic properties and growth selectivity
,”
J. Phys. Chem. C
117
,
25805
25816
(
2013
).
9.
Arjmand
,
M.
, and
U.
Sundararaj
, “
Effects of nitrogen doping on X-band dielectric properties of carbon nanotube/polymer nanocomposites
,”
ACS Appl. Mater. Interfaces
7
,
17844
17850
(
2015
).
10.
Arjmand
,
M.
,
K.
Chizari
,
B.
Krause
,
P.
Pötschke
, and
U.
Sundararaj
, “
Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites
,”
Carbon
98
,
358
372
(
2016
).
11.
Arjmand
,
M.
, and
U.
Sundararaj
, “
Electromagnetic interference shielding of nitrogen-doped and undoped carbon nanotube/polyvinylidene fluoride nanocomposites: A comparative study
,”
Compos. Sci. Technol.
118
,
257
263
(
2015
).
12.
Ameli
,
A.
,
M.
Arjmand
,
P.
Pötschke
,
B.
Krause
, and
U.
Sundararaj
, “
Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites
,”
Carbon
106
,
260
278
(
2016
).
13.
Arjmand
,
M.
,
A.
Ameli
, and
U.
Sundararaj
, “
Employing nitrogen doping as innovative technique to improve broadband dielectric properties of carbon nanotube/polymer nanocomposites
,”
Macromol. Mater. Eng.
301
,
555
565
(
2016
).
14.
Pawar
,
S. P.
,
M.
Arjmand
,
M.
Gandi
,
S.
Bose
, and
U.
Sundararaj
, “
Critical insights into understanding the effects of synthesis temperature and nitrogen doping towards charge storage capability and microwave shielding in nitrogen-doped carbon nanotube/polymer nanocomposites
,”
RSC Adv.
6
,
63224
63234
(
2016
).
15.
Sadeghi
,
S.
,
M.
Arjmand
,
I.
Otero Navas
,
A.
Zehtab Yazdi
, and
U.
Sundararaj
, “
Effect of nanofiller geometry on network formation in polymeric nanocomposites: Comparison of rheological and electrical properties of multiwalled carbon nanotube and graphene nanoribbon
,”
Macromolecules
50
,
3954
3967
(
2017
).
16.
Sadeghi
,
S.
,
M.
Arjmand
,
T.
Li
, and
U.
Sundararaj
, “
DC electrorheological response of polyethylene/organically modified layered silicate nanocomposites
,”
J. Polym. Sci. Polym. Phys.
55
,
1298
1309
(
2017
).
17.
Kamkar
,
M.
,
S.
Sadeghi
,
M.
Arjmand
, and
U.
Sundararaj
, “
Structural characterization of CVD custom-synthesized carbon nanotube/polymer nanocomposites in large-amplitude oscillatory shear (LAOS) mode: Effect of dispersion Characteristics in Confined Geometries
,”
Macromolecules
52
,
1489
1504
(
2019
).
18.
Sadeghi
,
S.
,
A.
Zehtab Yazdi
, and
U.
Sundararaj
, “
Controlling short-range interactions by tuning surface chemistry in HDPE/graphene nanoribbon nanocomposites
,”
J. Phys. Chem. B
119
,
11867
11878
(
2015
).
19.
Trappe
,
V.
, and
P.
Sandkühler
, “
Colloidal gels—Low-density disordered solid-like states
,”
Curr. Opin. Colloid Interface Sci.
8
,
494
500
(
2004
).
20.
Barnes
,
H. A.
, “
Thixotropy: A review
,”
J. Non-Newtonian Fluid Mech.
70
,
1
33
(
1997
).
21.
Laurati
,
M.
,
S. U.
Egelhaaf
, and
G.
Petekidis
, “
Nonlinear rheology of colloidal gels with intermediate volume fraction
,”
J. Rheol.
55
,
673
706
(
2011
).
22.
Hsiao
,
L. C.
,
R. S.
Newman
,
S. C.
Glotzer
, and
M. J.
Solomon
, “
Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
16029
16034
(
2012
).
23.
Varenik
,
M.
,
R.
Nadiv
,
I.
Levy
,
G.
Vasilyev
, and
O.
Regev
, “
Breaking through the solid/liquid processability barrier: Thermal conductivity and rheology in hybrid graphene–graphite polymer composites
,”
ACS Appl. Mater. Interfaces
9
,
7556
7564
(
2017
).
24.
Arjmand
,
M.
,
S.
Sadeghi
,
I. O.
Navas
,
Y. Z.
Keteklahijani
,
S.
Dordanihaghighi
, and
U.
Sundararaj
, “
Carbon nanotube versus graphene nanoribbon: Impact of nanofiller geometry on electromagnetic interference shielding of polyvinylidene fluoride nanocomposites
,”
Polymers
11
,
1064
1078
(
2019
).
25.
Mirkhani
,
S. A.
,
M.
Arjmand
,
S.
Sadeghi
,
B.
Krause
,
P.
Pötschke
, and
U.
Sundararaj
, “
Impact of synthesis temperature on morphology, rheology and electromagnetic interference shielding of CVD-grown carbon nanotube/polyvinylidene fluoride nanocomposites
,”
Synth. Met.
230
,
39
50
(
2017
).
26.
Gaussian09
,
R. A.
,
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
 et al., Gaussian, Inc., Wallingford CT 121, 150–166 (
2009
).
27.
Stewart
,
J. J. P.
, “
Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements
,”
J. Mol. Model.
13
,
1173
1213
(
2007
).
28.
Vega
,
J. F.
,
Y.
Da Silva
,
E.
Vicente-Alique
,
R.
Nũ Ez-Ramírez
,
M.
Trujillo
,
M. L.
Arnal
,
A. J.
,
P.
Dubois
, and
J.
Martínez-Salazar
, “
Influence of chain branching and Molecular Weight on Melt Rheology and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites
,”
Macromolecules.
47
,
5668
5681
(
2014
).
29.
Breuer
,
O.
,
U.
Sundararaj
, and
R. W.
Toogood
, “
The design and performance of a new miniature mixer for specialty polymer blends and nanocomposites
,”
Polym. Eng. Sci.
44
,
868
879
(
2004
).
30.
Breuer
,
O.
,
H.
Chen
,
B.
Lin
, and
U.
Sundararaj
, “
Simulation and visualization of flow in a new miniature mixer for multiphase polymer systems
,”
J. Appl. Polym. Sci.
97
,
136
142
(
2005
).
31.
Glerup
,
M.
,
M.
Castignolles
,
M.
Holzinger
,
G.
Hug
,
A.
Loiseau
, and
P.
Bernier
, “
Synthesis of highly nitrogen-doped multi-walled carbon nanotubes
,”
Chem. Commun.
2542
2543
(
2003
).
32.
Moisala
,
A.
,
A. G.
Nasibulin
, and
E. I.
Kauppinen
, “
The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—A review
,”
J. Phys. Condens. Matter.
15
,
S3011
S3035
(
2003
).
33.
Mutiso
,
R. M.
, and
K. I.
Winey
, “
Electrical properties of polymer nanocomposites containing rod-like nanofillers
,”
Prog. Polym. Sci.
40
,
63
84
(
2015
).
34.
Nevidomskyy
,
A. H.
,
G.
Csányi
, and
M. C.
Payne
, “
Chemically active substitutional nitrogen impurity in carbon nanotubes
,”
Phys. Rev. Lett.
91
,
105502
(
2003
).
35.
Dakin
,
T. W.
, “
Conduction and polarization mechanisms and trends in dielectric
,”
IEEE Electr. Insul. Mag.
22
,
11
28
(
2006
).
36.
Balberg
,
I.
,
C. H.
Anderson
,
S.
Alexander
, and
N.
Wagner
, “
Excluded volume and its relation to the onset of percolation
,”
Phys. Rev. B
30
,
3933
3943
(
1984
).
37.
Bauhofer
,
W.
, and
J. Z.
Kovacs
, “
A review and analysis of electrical percolation in carbon nanotube polymer composites
,”
Compos. Sci. Technol.
69
,
1486
1498
(
2009
).
38.
Laurent
,
C.
,
E.
Flahaut
, and
A.
Peigney
, “
The weight and density of carbon nanotubes versus the number of walls and diameter
,”
Carbon
48
,
2994
2996
(
2010
).
39.
Li
,
J.
,
P. C.
Ma
,
W. S.
Chow
,
C. K.
To
,
B. Z.
Tang
, and
J.
Kim
, “
Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes
,”
Adv. Funct. Mater.
17
,
3207
3215
(
2007
).
40.
Barnes
,
H. A.
, “
A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure
,”
J. Non-Newtonian Fluid Mech.
56
,
221
251
(
1995
).
41.
Ewoldt
,
R. H.
,
M. T.
Johnston
, and
L. M.
Caretta
,
Experimental challenges of shear rheology: How to avoid bad data
, in
Complex Fluids in Biological Systems
(
Springer
,
New York
,
2015
), pp.
207
241
.
42.
Kamkar
,
M.
,
S.
Sadeghi
,
M.
Arjmand
,
E.
Aliabadian
, and
U.
Sundararaj
, “
Intra-cycle elastic nonlinearity of nitrogen-doped carbon nanotube/polymer nanocomposites under medium amplitude oscillatory shear (MAOS) flow
,”
Nanomaterials
10
,
1257
1273
(
2020
).
43.
Larson
,
R. G.
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
,
213
263
(
1992
).
44.
Kharchenko
,
S. B.
,
J. F.
Douglas
,
J.
Obrzut
,
E. A.
Grulke
, and
K. B.
Migler
, “
Flow-induced properties of nanotube-filled polymer materials
,”
Nat. Mater.
3
,
564
568
(
2004
).
45.
Hasegawa
,
R.
,
Y.
Takahashi
,
Y.
Chatani
, and
H.
Tadokoro
, “
Crystal structures of three crystalline forms of poly (vinylidene fluoride)
,”
Polym. J.
3
,
600
610
(
1972
).
46.
Rouse
,
J. H.
, “
Polymer-assisted dispersion of single-walled carbon nanotubes in alcohols and applicability toward carbon nanotube/sol−gel composite formation
,”
Langmuir
21
,
1055
1061
(
2005
).
47.
Zare
,
Y.
, and
K. Y.
Rhee
, “
Study on the effects of the interphase region on the network properties in polymer carbon nanotube nanocomposites
,”
Polymers
12
,
182
195
(
2020
).
48.
Baxter
,
S. C.
, and
C. T.
Robinson
, “
Pseudo-percolation: Critical volume fractions and mechanical percolation in polymer nanocomposites
,”
Compos. Sci. Technol.
71
,
1273
1279
(
2011
).
49.
McClory
,
C.
,
T.
McNally
,
M.
Baxendale
,
P.
Pötschke
,
W.
Blau
, and
M.
Ruether
, “
Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality
,”
Eur. Polym. J.
46
,
854
868
(
2010
).
50.
Hu
,
G.
,
C.
Zhao
,
S.
Zhang
,
M.
Yang
, and
Z.
Wang
, “
Low percolation thresholds of electrical conductivity and rheology in poly (ethylene terephthalate) through the networks of multi-walled carbon nanotubes
,”
Polymer
47
,
480
488
(
2006
).
51.
Bhattacharyya
,
A. R.
,
P.
Pötschke
,
M.
Abdel-Goad
, and
D.
Fischer
, “
Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites
,”
Chem. Phys. Lett.
392
,
28
33
(
2004
).
52.
Geiser
,
V.
,
Y.
Leterrier
, and
J.-A. E.
Månson
, “
Rheological behavior of concentrated hyperbranched polymer/silica nanocomposite suspensions
,”
Macromolecules.
43
,
7705
7712
(
2010
).
53.
Hyun
,
K.
, and
M.
Wilhelm
, “
Establishing a new mechanical nonlinear coefficient Q from FT-rheology: First investigation of entangled linear and comb polymer model systems
,”
Macromolecules
42
,
411
422
(
2009
).
54.
Wilhelm
,
M.
, “
Fourier-transform rheology
,”
Macromol. Mater. Eng.
287
,
83
105
(
2002
).
55.
Wilhelm
,
M.
,
P.
Reinheimer
, and
M.
Ortseifer
, “
High sensitivity Fourier-transform rheology
,”
Rheol. Acta
38
,
349
356
(
1999
).
56.
Reinheimer
,
K.
,
M.
Grosso
, and
M.
Wilhelm
, “
Fourier transform rheology as a universal non-linear mechanical characterization of droplet size and interfacial tension of dilute monodisperse emulsions
,”
J. Colloid Interface Sci.
360
,
818
825
(
2011
).
57.
Merger
,
D.
, and
M.
Wilhelm
, “
Intrinsic nonlinearity from LAOStrain—Experiments on various strain-and stress-controlled rheometers: A quantitative comparison
,”
Rheol. Acta
53
,
621
634
(
2014
).
58.
Kádár
,
R.
,
K.
Gaska
, and
T.
Gkourmpis
, “
Nonlinear ‘oddities’ at the percolation of 3D hierarchical graphene polymer nanocomposites
,”
Rheol. Acta
59
,
333
347
(
2020
).
59.
de Souza Mendes
,
P. R.
,
R. L.
Thompson
,
A. A.
Alicke
, and
R. T.
Leite
, “
The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter
,”
J. Rheol.
58
,
537
561
(
2014
).
60.
de Souza Mendes
,
P. R.
, and
R. L.
Thompson
, “
A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids
,”
Rheol. Acta
52
,
673
694
(
2013
).
61.
Leite
,
R. T.
,
P. R.
de Souza Mendes
, and
R. L.
Thompson
, “
A simple method to analyze materials under quasilinear large amplitude oscillatory shear flow (QL-LAOS)
,”
J. Rheol.
63
,
305
317
(
2019
).
62.
See supplementary material at https://doi.org/10.1122/8.0000027|64|6 for additional data cited in the text on molecular simulations, structural characterization and melt rheology of CNTs and CNT-based nanocomposites.

Supplementary Material

You do not currently have access to this content.