An experimental protocol is developed to directly measure the new material functions revealed by medium amplitude parallel superposition (MAPS) rheology. This protocol measures the medium amplitude response of a material to a simple shear deformation composed of three sine waves at different frequencies, revealing a rich dataset consisting of up to 19 measurements of the third-order complex modulus at distinct three-frequency coordinates. We discuss how the choice of input frequencies influences the features of the MAPS domain studied by the experiment. A polynomial interpolation method for reducing the bias of measured values from spectral leakage and reducing variance due to noise is discussed, including a derivation of the optimal range of amplitudes for the input signal. This leads to the conclusion that conducting the experiment in a stress-controlled fashion possesses a distinct advantage to the strain-controlled mode. The experimental protocol is demonstrated through measurements of the MAPS response of a model complex fluid: a surfactant solution of wormlike micelles. The resulting dataset is indeed large and feature-rich, while still acquired in a time comparable to similar medium amplitude oscillatory shear (MAOS) experiments. We demonstrate that the data represent measurements of an intrinsic material function by studying its internal consistency, compatibility with low-frequency predictions for Coleman–Noll simple fluids, and agreement with data obtained via MAOS amplitude sweeps. Finally, the data are compared to predictions from the corotational Maxwell model to demonstrate the power of MAPS rheology in determining whether a constitutive model is consistent with a material’s time-dependent response.

1.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics
(
Wiley
,
New York
,
1987
).
2.
Giacomin
,
A. J.
, and
J. M.
Dealy
,
Large-Amplitude Oscillatory Shear
(
Springer Netherlands
,
Dordrecht
,
1993
), pp.
99
121
, ISBN: 978-94-011-2114-9.
3.
Ewoldt
,
R. H.
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
(
6
),
1427
1458
(
2008
).
4.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
(
12
),
1697
1753
(
2011
), ISSN: 0079-6700.
5.
Cho
,
K. S.
,
Viscoelasticity of Polymers: Theory and Numerical Algorithms
(
Springer
,
Berlin
,
2016
).
6.
Tanner
,
R. I.
, “
Comparative studies of some simple viscoelastic theories
,”
Trans. Soc. Rheol.
12
(
1
),
155
182
(
1968
).
7.
Vermant
,
J.
,
L.
Walker
,
P.
Moldenaers
, and
J.
Mewis
, “
Orthogonal versus parallel superposition measurements
,”
J. Non-Newton. Fluid Mech.
79
(
2
),
173
189
(
1998
), ISSN: 0377-0257.
8.
Yamamoto
,
M.
, “
Rate-dependent relaxation spectra and their determination
,”
Trans. Soc. Rheol.
15
(
2
),
331
344
(
1971
).
9.
Lennon
,
K. R.
,
G. H.
McKinley
, and
J. W.
Swan
, “
Medium amplitude parallel superposition (maps) rheology. Part 1: Mathematical framework and theoretical examples
,”
J. Rheol.
64
(
3
),
551
579
(
2020
).
10.
Ewoldt
,
R. H.
, and
N. A.
Bharadwaj
, “
Low-dimensional intrinsic material functions for nonlinear viscoelasticity
,”
Rheol. Acta
52
(
3
),
201
219
(
2013
), ISSN: 1435-1528.
11.
Davis
,
W. M.
, and
C. W.
Macosko
, “
Nonlinear dynamic mechanical moduli for polycarbonate and PMMA
,”
J. Rheol.
22
(
1
),
53
71
(
1978
).
12.
Noll
,
W.
, “
A mathematical theory of the mechanical behavior of continuous media
,”
Arch. Ration. Mech. Anal.
2
(
1
),
197
226
(
1958
).
13.
Green
,
A. E.
, and
R. S.
Rivlin
, “
The mechanics of non-linear materials with memory
,”
Arch. Ration. Mech. Anal.
4
(
1
),
387
404
(
1959
), ISSN: 1432-0673.
14.
Coleman
,
B. D.
, and
W.
Noll
, “
Foundations of linear viscoelasticity
,”
Rev. Mod. Phys.
33
(
2
),
239
249
(
1961
).
15.
Oldroyd
,
J. G.
, and
A. H.
Wilson
, “
On the formulation of rheological equations of state
,”
Proc. R. Soc. London Ser. A. Math. Phys. Sci.
200
(
1063
),
523
541
(
1950
).
16.
Green
,
A. E.
, and
R. S.
Rivlin
, “
The mechanics of non-linear materials with memory
,”
Arch. Ration. Mech. Anal.
1
,
1
21
(
1957
).
17.
Pipkin
,
A. C.
, “
Small finite deformations of viscoelastic solids
,”
Rev. Mod. Phys.
36
(
4
),
1034
1041
(
1964
).
18.
Rivlin
,
R. S.
, and
K. N.
Sawyers
, “
Nonlinear continuum mechanics of viscoelastic fluids
,”
Annu. Rev. Fluid Mech.
3
(
1
),
117
146
(
1971
).
19.
Holly
,
E. E.
,
S. K.
Venkataraman
,
F.
Chambon
, and
H. H.
Winter
, “
Fourier transform mechanical spectroscopy of viscoelastic materials with transient structure
,”
J. Non-Newton. Fluid Mech.
27
(
1
),
17
26
(
1988
), ISSN: 0377-0257.
20.
Boyd
,
S.
,
Y.
Tang
, and
L.
Chua
, “
Measuring volterra kernels
,”
IEEE Trans. Circuits Syst.
30
(
8
),
571
577
(
1983
), ISSN: 1558-1276.
21.
Chua
,
L. N. O.
, and
Y.
Liao
, “
Measuring volterra kernels (II)
,”
Int. J. Circuit Theor. Appl.
17
(
2
),
151
190
(
1989
).
22.
Singh
,
P. K.
,
J. M.
Soulages
, and
R. H.
Ewoldt
, “
Frequency-sweep medium-amplitude oscillatory shear (MAOS)
,”
J. Rheol.
62
(
1
),
277
293
(
2018
).
23.
Martinetti
,
L.
, and
R. H.
Ewoldt
, “
Time-strain separability in medium-amplitude oscillatory shear
,”
Phys. Fluids
31
,
021213
(
2019
).
24.
Halme
,
A.
,
J.
Orava
, and
H.
Blomberg
, “
Polynomial operators in non-linear systems theory
,”
Int. J. Syst. Sci.
2
(
1
),
25
47
(
1971
), ISSN: 0020-7721.
25.
Klinger
,
A.
, “
The Vandermonde matrix
,”
Am. Math. Mon.
74
(
5
),
571
574
(
1967
), ISSN:00029890 and ISSN:19300972.
26.
Boyd
,
S.
, “
Multitone signals with low crest factor
,”
IEEE Trans. Circuits Syst.
33
(
10
),
1018
1022
(
1986
).
27.
Friese
,
M.
, “
Multitone signals with low crest factor
,”
IEEE Trans. Commun.
45
(
10
),
1338
1344
(
1997
).
28.
Rehage
,
H.
, and
H.
Hoffmann
, “
Viscoelastic surfactant solutions: Model systems for rheological research
,”
Mol. Phys.
74
(
5
),
933
973
(
1991
).
29.
Hoffmann
,
H.
,
H.
Rehage
, and
A.
Rauscher
, Rheology of viscoelastic micellar solutions, in Structure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution, edited by S.-H. Chen, J. S. Huang, and P. Tartaglia (Springer Netherlands, Dordrecht, 1992), pp. 493–510, ISBN: 978-94-011-2540-6.
30.
Cates
,
M. E.
, “
Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers)
,”
J. Phys. Chem.
94
(
1
),
371
375
(
1990
).
31.
Yesilata
,
B.
,
C.
Clasen
, and
G. H.
McKinley
, “
Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions
,”
J. Non-Newton. Fluid Mech.
133
(
2
),
73
90
(
2006
), ISSN: 0377-0257.
32.
Bharadwaj
,
N. A.
, and
R. H.
Ewoldt
, “
The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear
,”
J. Rheol.
58
(
4
),
891
910
(
2014
).
33.
DeWitt
,
T. W.
, “
A rheological equation of state which predicts non-Newtonian viscosity, normal stresses, and dynamic moduli
,”
J. Appl. Phys.
26
(
7
),
889
894
(
1955
).
34.
Song
,
H. Y.
,
H. J.
Kong
,
S. Y.
Kim
, and
K.
Hyun
, “
Evaluating predictability of various constitutive equations for MAOS behavior of entangled polymer solutions
,”
J. Rheol.
64
(
3
),
673
707
(
2020
).
35.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newton. Fluid Mech.
11
(
1
),
69
109
(
1982
).
36.
Gurnon
,
A. K.
, and
N. J.
Wagner
, “
Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles
,”
J. Rheol.
56
(
2
),
333
351
(
2012
).
37.
Kim
,
S.
,
J.
Mewis
,
C.
Clasen
, and
J.
Vermant
, “
Superposition rheometry of a wormlike micellar fluid
,”
Rheol. Acta
52
(
8–9
),
727
740
(
2013
).
38.
Yoo
,
J. Y.
, and
H. C.
Choi
, “
On the steady simple shear flows of the one-mode Giesekus fluid
,”
Rheol. Acta
28
(
1
),
13
24
(
1989
).
39.
Salmon
,
J.-B.
,
A.
Colin
,
S.
Manneville
, and
F.
Molino
, “
Velocity profiles in shear-banding wormlike micelles
,”
Phys. Rev. Lett.
90
(
22
),
228303
(
2003
).
40.
Moorcroft
,
R. L.
, and
S. M.
Fielding
, “
Shear banding in time-dependent flows of polymers and wormlike micelles
,”
J. Rheol.
58
(
1
),
103
147
(
2014
).
41.
Fardin
,
M. A.
,
T.
Divoux
,
M. A.
Guedeau-Boudeville
,
I.
Buchet-Maulien
,
J.
Browaeys
,
G. H.
McKinley
,
S.
Manneville
, and
S.
Lerouge
, “
Shear-banding in surfactant wormlike micelles: Elastic instabilities and wall slip
,”
Soft Matter
8
(
8
),
2535
2553
(
2012
).
42.
Geri
,
M.
,
B.
Keshavarz
,
T.
Divoux
,
C.
Clasen
,
D. J.
Curtis
, and
G. H.
McKinley
, “
Time-resolved mechanical spectroscopy of soft materials via optimally windowed chirps
,”
Phys. Rev. X
8
,
041042
(
2018
).
43.
Bierwirth
,
S. P.
,
G.
Honorio
,
C.
Gainaru
, and
R.
Böhmer
, “
First-order and third-order nonlinearities from medium-amplitude oscillatory shearing of hydrogen-bonded polymers and other viscoelastic materials
,”
Macromolecules
52
(
22
),
8690
8704
(
2019
).
44.
Platz
,
D.
,
E. A.
Tholén
,
D.
Pesen
, and
D. B.
Haviland
, “
Intermodulation atomic force microscopy
,”
Appl. Phys. Lett.
92
(
15
),
153106
(
2008
), ISSN: 0003-6951.
45.
Platz
,
D.
,
E. A.
Tholén
,
C.
Hutter
,
A. C.
von Bieren
, and
D. B.
Haviland
, “
Phase imaging with intermodulation atomic force microscopy
,”
Ultramicroscopy
110
(
6
),
573
577
(
2010
), ISSN: 0304-3991.
46.
Ciampa
,
F.
,
G.
Scarselli
, and
M.
Meo
, “
On the generation of nonlinear damage resonance intermodulation for elastic wave spectroscopy
,”
J. Acoust. Soc. Am.
141
(
4
),
2364
2374
(
2017
), ISSN: 0001-4966.
47.
Straka
,
L.
,
Y.
Yagodzinskyy
,
M.
Landa
, and
H.
Hänninen
, “
Detection of structural damage of aluminum alloy 6082 using elastic wave modulation spectroscopy
,”
NDT & E Int.
41
(
7
),
554
563
(
2008
), ISSN: 0963-8695.
48.
Hillis
,
A. J.
,
S. A.
Neild
,
B. W.
Drinkwater
, and
P. D.
Wilcox
, “
Global crack detection using bispectral analysis
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
462
(
2069
),
1515
1530
(
2006
).
49.
Xiang
,
Y.
, and
S. K.
Tso
, “
Detection and classification of flaws in concrete structure using bispectra and neural networks
,”
NDT & E Int.
35
(
1
),
19
27
(
2002
), ISSN: 0963-8695.
50.
Courtney
,
C. R. P.
,
B. W.
Drinkwater
,
S. A.
Neild
, and
P. D.
Wilcox
, “
Factors affecting the ultrasonic intermodulation crack detection technique using bispectral analysis
,”
NDT & E Int.
41
(
3
),
223
234
(
2008
), ISSN: 0963-8695.
51.
Schrag
,
J. L.
, “
Deviation of velocity gradient profiles from the ‘gap loading’ and ‘surface loading’ limits in dynamic simple shear experiments
,”
Trans. Soc. Rheol.
21
(
3
),
399
413
(
1977
).
52.
Giacomin
,
A. J.
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Large-amplitude oscillatory shear flow from the corotational Maxwell model
,”
J. Non-Newton. Fluid Mech.
166
(
19
),
1081
1099
(
2011
), ISSN: 0377-0257.
53.
Schroyen
,
B.
,
D.
Vlassopoulos
,
P.
Van Puyvelde
, and
J.
Vermant
, “
Bulk rheometry at high frequencies: A review of experimental approaches
,”
Rheol. Acta
59
,
1
22
(
2020
).
54.
See the supplementary material at https://doi.org/10.1122/8.0000104 for a version of the mitmaps software tool along with documentation; the data files used to construct Fig. 9 and Figs. 11 through 14 and a tutorial on how to construct these figures as well as Figs. 15 and 16 are provided. A CSV file containing the experimentally measured values of the MAPS response functions shown in Figs. 11 through 14 is also included in this supplementary material.

Supplementary Material

You do not currently have access to this content.