Dense suspensions of model hard-sphere (HS)-like colloids, with different particle sizes, are examined experimentally near and in the glass state, under shear and extensional rheology. Under steady shear flow, we detect both continuous and discontinuous shear thickening (DST) above a critical shear rate (or shear stress), depending on the particle size and volume fraction. Start-up shear experiments show stress overshoots in the vicinity of the onset of DST indicative of microscopic structural changes, while the sample macroscopically shows dilatancy effects. Measurement of shear and normal stresses together with direct video imaging of the sample probes the appearance of the positive first normal stress difference, N1, at the onset of shear thickening at high shear rates and glassy states. This is followed by dilatancy effects accompanied by large fluctuations of shear and normal stress and stick-slip phenomena. Similarly, under extensional flow probed by capillary breakup and filament stretching setups, we find liquidlike response for low strain rates, while above a critical strain rate, the samples exhibit a solidlike behavior where thickening is accompanied by a macroscopic dilatancy and granulation. Monitoring the filament thinning processes under different conditions (volume fractions and strain rates), we have created a state diagram where all responses of a HS suspension (liquidlike, shear thinning, shear thickening, and dilatant) are shown. We, finally, compare the shear thickening response of these HS-like suspensions and glasses in shear with that in the extensional flow.

1.
Barnes
,
H. A.
, “
Shear thickening (‘dilatancy’) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids
,”
J. Rheol.
33
,
329
366
(
1989
).
2.
Wagner
,
N. J.
, and
J. F.
Brady
, “
Shear thickening in colloidal dispersions
,”
Phys. Today
62
(
10
),
27
32
(
2009
).
3.
Lee
,
Y. S.
,
E. D.
Wetzel
, and
N. J.
Wagner
, “
The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid
,”
J. Mater. Sci.
38
,
2825
2833
(
2003
).
4.
Galindo-Rosales
,
F. J.
,
S.
Martínez-Aranda
, and
L.
Campo-Deaño
, “
CorkSTFμfluidics—A novel concept for the development of eco-friendly light-weight energy absorbing composites
,”
Mater. Des.
82
,
326
334
(
2015
).
5.
Helber
,
R.
,
F.
Doncker
, and
R.
Bung
, “
Vibration attenuation by passive stiffness switching mounts
,”
J. Sound Vib.
138
,
47
57
(
1990
).
6.
Laun
,
H. M.
,
R.
Bung
, and
F.
Schmidt
, “
Rheology of extremely shear thickening polymer dispersions) (passively viscosity switching fluids)
,”
J. Rheol.
35
,
999
1034
(
1991
).
7.
Nilsson
,
M. A.
,
R.
Kulkarni
,
L. G.
Ryan
,
H. R.
Singh
,
E.
Baumhoff
, and
J. P.
Rothstein
, “
Effect of fluid rheology on enhanced oil recovery in a microfluidic sandstone device
,”
J. Nonnewton. Fluid Mech.
202
,
112
119
(
2013
).
8.
Hoffman
,
R. L.
, “
Discontinuous and dilatant viscosity behavior in concentrated suspensions I. Observation of a flow instability
,”
Trans. Soc. Rheol.
16
,
155
173
(
1972
).
9.
Hoffman
,
R. L.
, “
Discontinuous and dilatant viscosity behavior in concentrated suspensions II. Theory and experimental tests
,”
J. Colloid. Interface Sci.
46
,
491
506
(
1974
).
10.
Hoffman
,
R. L.
, “
Discontinuous and dilatant viscosity behavior in concentrated suspensions III. Necessary conditions for their occurrence in viscometric flows
,”
Adv. Colloid. Interface Sci.
17
,
161
184
(
1982
).
11.
Egres
,
R. G.
, and
N. J.
Wagner
, “
The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition
,”
J. Rheol.
49
,
719
746
(
2005
).
12.
Egres
,
R. G.
,
F.
Nettesheim
, and
N. J.
Wagner
, “
Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition
,”
J. Rheol.
50
,
685
709
(
2006
).
13.
Brady
,
J. F.
, and
G.
Bossis
, “
The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation
,”
J. Fluid Mech.
155
,
105
129
(
1985
).
14.
D’Haene
,
P.
,
J.
Mewis
, and
G. G.
Fuller
, “
Scattering dichroism measurements of flow-induced structure of a shear thickening suspension
,”
J. Colloid Interface Sci.
156
,
350
358
(
1993
).
15.
Bender
,
J. W.
, and
N. J.
Wagner
, “
Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions
,”
J. Colloid Interface Sci.
172
,
171
184
(
1995
).
16.
Bender
,
J.
, and
N. J.
Wagner
, “
Reversible shear thickening in monodisperse and bidisperse colloidal dispersions
,”
J. Rheol.
40
,
899
916
(
1996
).
17.
Laun
,
H. M.
, and
R.
Bung
, “
Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow
,”
J. Rheol.
743
787
(
1992
).
18.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition
,”
J. Chem. Phys.
117
,
10291
10302
(
2002
).
19.
Lee
,
Y. S.
, and
N. J.
Wagner
, “
Rheological properties and small-angle neutron scattering of a shear thickening, nanoparticle dispersion at high shear rates
,”
Ind. Eng. Chem. Res.
45
,
7015
7024
(
2006
).
20.
Kalman
,
D. P.
,
R. L.
Merrill
,
N. J.
Wagner
, and
E. D.
Wetzel
, “
Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle fluid suspensions
,”
ACS Appl. Mater. Interfaces
1
,
2602
2612
(
2009
).
21.
Cheng
,
X.
,
J. H.
McCoy
,
J. N.
Israelachvili
, and
I.
Cohen
, “
Imaging the microscopic structure of shear thinning and thickening colloidal suspensions
,”
Science
333
,
1276
1279
(
2011
).
22.
Mewis
,
J.
and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University Press
,
Cambridge
,
2011
).
23.
Boersma
,
W. H.
,
J.
Laven
, and
H. N.
Stein
, “
Shear thickening (dilatancy) in concentrated dispersions
,”
AIChE J.
36
,
321
332
(
1990
).
24.
Bergenholtz
J.
,
J. F.
Brady
, and
M.
Vicic
, “
The non-Newtonian rheology of dilute colloidal suspensions
,”
J. Fluid Mech.
456
,
239
275
(
2002
).
25.
Fernandez
,
N.
,
R.
Mani
,
D.
Rinaldi
,
D.
Kadau
,
M.
Mosquet
,
H.
Lombois-Burger
,
J.
Cayer-Barrioz
,
H. J.
Herrmann
,
N. D.
Spencer
, and
L.
Isa
, “
Microscopic mechanism for shear thickening of non-Brownian suspensions
,”
Phys. Rev. Lett.
108301
,
1
5
(
2013
).
26.
Heussinger
,
C.
, “
Shear thickening in granular suspensions: Interparticle friction and dynamically correlated clusters
,”
Phys. Rev. E
88
,
050201
(
2013
).
27.
Seto
,
R.
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
,
218301
(
2013
).
28.
Brown
,
M.
,
E.
Jaeger
, and
H.
Shear
, “
Thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming
,”
Rep. Prog. Phys.
77
,
046602
(
2014
).
29.
Allen
,
B.
,
B.
Sokol
,
S.
Mukhopadhyay
,
R.
Maharjan
, and
E.
Brown
, “
System-spanning dynamically jammed region in response to impact of cornstarch and water suspensions
,”
Phys. Rev. E
97
,
052603
(
2018
).
30.
Fall
,
A.
,
N.
Huang
,
F.
Bertrand
,
G.
Ovarlez
, and
D.
Bonn
, “
Shear thickening of cornstarch suspensions as a reentrant jamming transition
,”
Phys. Rev. Lett.
100
,
018301
(
2008
).
31.
Reynolds
,
O.
“LVII.
On the dilatancy of media composed of rigid particles in contact With experimental illustrations
,”
Philos. Mag. Ser.
20
,
469
481
(
1885
).
32.
Metzner
,
A. B.
, and
M.
Whitlock
, “
Flow behavior of concentrated (dilatant) suspensions
,”
Trans. Soc. Rheol.
2
,
239
254
(
1958
).
33.
Lootens
,
D.
,
H.
van Damme
,
Y.
Hémar
, and
P.
Hébraud
, “
Dilatant flow of concentrated suspensions of rough particles
,”
Phys. Rev. Lett.
95
,
268302
(
2005
).
34.
Brown
,
E.
, and
H. M.
Jaeger
, “
Dynamic jamming point for shear thickening suspensions
,”
Phys. Rev. Lett.
103
,
086001
(
2009
).
35.
Holmes
,
C. B.
,
M.
Fuchs
, and
M. E.
Cates
, “
Jamming transitions in a schematic model of suspension rheology
,”
Eur. Lett.
63
,
240
246
(
2003
).
36.
Melrose
,
J. R.
, and
R. C.
Ball
, “'
̒Contact networks’ in continuously shear thickening colloids
,”
J. Rheol.
48
,
961
978
(
2004
).
37.
Wyart
,
M.
, and
M. E.
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
112
,
1
5
(
2014
).
38.
Lin
,
N. Y. C.
,
B. M.
Guy
,
M.
Hermes
,
C.
Ness
,
J.
Sun
,
W. C. K.
Poon
, and
I.
Cohen
, “
Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,”
Phys. Rev. Lett.
115
,
228304
(
2015
).
39.
Guy
,
B. E.
,
M.
Hermes
, and
W. E. E.
Poon
, “
Towards a unified description of the rheology of hard-particle suspensions
,”
Phys. Rev. Lett.
115
,
1
5
(
2015
).
40.
Hsiao
,
L. C.
,
S.
Jamali
,
D. J.
Beltran-Villegas
,
E.
Glynos
,
P. F.
Green
,
R. G.
Larson
 et al., “
A rheological state diagram for rough colloids in shear flow
,”
Phys. Rev. Lett.
119
,
158001
(
2017
).
41.
Jamali
,
S.
,
A.
Boromand
,
N.
Wagner
, and
J.
Maia
, “
Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions
,”
J. Rheol.
59
,
1377
1395
(
2015
).
42.
Phung
,
T. N.
,
J. F.
Brady
, and
G.
Bossis
, “
Stokesian dynamics simulation of Brownian suspensions
,”
J. Fluid Mech.
313
,
181
207
(
1996
).
43.
Foss
,
D. R.,
and
J. F.
Brady
, “
Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation
,”
J. Fluid Mech.
407
,
167
(
2000
).
44.
Melrose
,
J. R.
, and
R. C.
Ball
, “
Continuous shear thickening transitions in model concentrated colloids—The role of interparticle forces
,”
J. Rheol.
48
,
937
(
2004
).
45.
Brown
,
E.
, and
H. M.
Jaeger
, “
The role of dilation and confining stresses in shear thickening of dense suspensions
,”
J. Rheol.
56
,
875
(
2012
).
46.
Byron Bird
,
R.
,
C.
Robert
, and
O. H.
Armstrong
, “
Dynamics of polymer liquids
,” in
Fluid Mechanics
(John Wiley & Sons
,
New York
,
1987
), Vol. 1.
47.
Macosko
,
C. W.
,
Rheology : Principles, Measurements, and Applications
(
VCH
,
New York
,
1994
).
48.
Cates
,
M. E.
,
J. P.
Wittmer
,
J.-P.
Bouchaud
, and
C. P.
Jamming
, “
Force chains, and fragile matter
,”
Phys. Rev. Lett.
81
,
1841
1844
(
1998
).
49.
Cates
,
M. E.
,
M. D.
Haw
, and
C. B.
Holmes
, “
Dilatancy, jamming, and the physics of granulation
,”
J. Phys. Condens. Matter.
17
,
S2517
S2531
(
2005
).
50.
Gurnon
,
A. K.
,
N. J.
Wagner
,
B. J.
Ackerson
,
J. B.
Hayter
,
N. A.
Clark
,
L.
Cotter
 et al., “
Microstructure and rheology relationships for shear thickening colloidal dispersions
,”
J. Fluid Mech.
769
,
242
276
(
2015
).
51.
Cwalina
,
C. D.
, and
N. J.
Wagner
, “
Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions
,”
J. Rheol.
58
,
949
967
(
2014
).
52.
Laun
,
H. M.
, “
Normal stresses in extremely shear thickening polymer dispersions
,”
J. Nonnewton. Fluid Mech.
54
,
87
108
(
1994
).
53.
Lee
,
M.
,
M.
Alcoutlabi
,
J. J.
Magda
,
C.
Dibble
,
M. J.
Solomon
,
X.
Shi
, et al., “
The effect of the shear-thickening transition of model colloidal spheres on the sign of N1 and on the radial pressure profile in torsional shear flows
,”
J. Rheol.
50
,
293
(
2006
).
54.
Royer
,
J. R.
,
D. L.
Blair
, and
S. D.
Hudson
, “
Rheological signature of frictional interactions in shear thickening suspensions
,”
Phys. Rev. Lett.
188301
,
1
5
(
2016
).
55.
Sankaran
,
A. K.
, and
J. P.
Rothstein
, “
Effect of viscoelasticity on liquid transfer during gravure printing
,”
J Nonnewton. Fluid Mech.
175
,
64
75
(
2012
).
56.
Galindo-Rosales
,
F. J.
,
M. A.
Alves
, and
M. S. N.
Oliveira
, “
Microdevices for extensional rheometry of low viscosity elastic liquids: A review
,”
Microfluid. Nanofluid.
14
,
1
19
(
2013
).
57.
White E
,
B.
,
M.
Chellamuthu
, and
J.
Rothstein
, “
Extensional rheology of a shear-thickening cornstarch and water suspension
,”
Rheol. Acta
49
,
119
129
(
2010
).
58.
Chellamuthu
,
M.
,
E. M.
Arndt
, and
J. P.
Rothstein
, “
Extensional rheology of shear-thickening nanoparticle suspensions
,”
Soft Matter
5
,
2117
2224
(
2009
).
59.
Smith
,
M. I.
,
R.
Besseling
,
M. E.
Cates
, and
V.
Bertola
, “
Dilatancy in the flow and fracture of stretched colloidal suspensions
,”
Nat. Commun.
1
,
114
(
2010
).
60.
Royall
,
C. P.
,
W. C. K.
Poon
, and
E. R.
Weeks
, “
In search of colloidal hard spheres
,”
Soft Matter
9
,
17
27
(
2013
).
61.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
The effects of particle size on reversible shear thickening of concentrated colloidal dispersions
,”
J. Chem. Phys.
114
,
10514
10527
(
2001
).
62.
Tuladhar
,
T. R.
, and
M. R.
Mackley
, “
Filament stretching rheometry and break-up behaviour of low viscosity polymer solutions and inkjet fluids
,”
J. Nonnewton. Fluid Mech.
148
,
97
108
(
2008
).
63.
Rodd
,
L. E.
,
T. P.
Scott
,
J. J.
Cooper-White
, and
G. H.
McKinley
, “
Capillary break-up rheometry of low-viscosity elastic fluids
,”
Appl. Rheol.
15
,
12
27
(
2005
).
64.
Campo-Deaño
,
L.
, and
C.
Clasen
, “
The slow retraction method (SRM) for the determination of ultra-short relaxation times in capillary breakup extensional rheometry experiments
,”
J. Nonnewton. Fluid Mech.
165
,
1688
1699
(
2010
).
65.
Galindo-Rosales
,
F. J.
,
J. P.
Segovia-Gutiérrez
,
F. T.
Pinho
,
M. A.
Alves
, and
J.
de Vicente
, “
Extensional rheometry of magnetic dispersions
,”
J. Rheol.
59
,
193
209
(
2015
).
66.
Niedzwiedz
,
K.
,
O.
Arnolds
,
N.
Willenbacher
, and
R.
Brummer
, “
How to characterize yield stress fluids with capillary breakup extensional rheometry (CaBER)?
,”
Appl. Rheol.
19
,
1
10
(
2009
).
67.
Spiegelberg
,
S. H.
,
D. C.
Ables
, and
G. H.
McKinley
, “
The role of end-effects on measurements of extensional viscosity in filament stretching rheometers
,”
J. Nonnewton. Fluid Mech.
64
,
229
267
(
1996
).
68.
McKinley
,
G. H.
, and
T.
Sridhar
, “
Filament -stretching rheometry of complex fluids
,”
Annu. Rev. Fluid Mech.
34
,
375
415
(
2002
).
69.
Bach
,
A.
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Extensional viscosity for polymer melts measured in the filament stretching rheometer
,”
J. Rheol.
47
,
429
441
(
2003
).
70.
Marín JM
,
R.
,
J. K.
Huusom
,
N. J.
Alvarez
,
Q.
Huang
,
H. K.
Rasmussen
,
A.
Bach
 et al., “
A control scheme for filament stretching rheometers with application to polymer melts
,”
J. Nonnewton. Fluid Mech.
194
,
14
22
(
2013
).
71.
Orr
,
N. V.
, and
T.
Sridhar
, “
Probing the dynamics of polymer solutions in extensional flow using step strain rate experiments
,”
J. Nonnewton. Fluid Mech.
82
,
203
232
(
1999
).
72.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions
,”
J. Rheol.
45
,
1205
1222
(
2001
).
73.
Farr
,
R. S.
,
J. R.
Melrose
, and
R. C.
Ball
, “
Kinetic theory of jamming in hard-sphere startup flows,”
Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.
55
,
7203
7211
(
1997
).
74.
Koumakis
,
N.
,
M.
Laurati
,
S. U.
Egelhaaf
,
J. F.
Brady
, and
G.
Petekidis
, “
Yielding of hard-sphere glasses during start-up shear
,”
Phys. Rev. Lett.
108
,
98303
(
2012
).
75.
Voigtmann
,
T.
, “
Nonlinear glassy rheology
,”
Curr. Opin. Colloid Interface Sci.
19
,
549
560
(
2014
).
76.
Snijkers
,
F.
, and
D.
Vlassopoulos
, “
Cone-partitioned-plate geometry for the ARES rheometer with temperature control
,”
J. Rheol.
55
,
1167
1186
(
2011
).
77.
See supplementary material at https://doi.org/10.1122/1.5143653 to observe the results with cone plate and cone-partition-plate (CPP) in steady shear measurements as well as in oscillatory shear. Supplementary material also includes videos sample response during the transient start-up shear experiments of Fig. 7 and extensional experiments depicted in Fig. 9.
78.
Koumakis
,
N.
,
M.
Laurati
,
A. R.
Jacob
,
K. J.
Mutch
,
A.
Abdellali
,
A. B.
Schofield
 et al., “
Start-up shear of concentrated colloidal hard spheres: Stresses, dynamics, and structure
,”
J. Rheol.
60
,
603
623
(
2016
).
79.
Hermes
,
M.
,
B. M.
Guy
, and
W. C. K.
Poon
, “
Unsteady flow and particle migration in dense, non-Brownian suspensions
,”
J. Rheol.
60
,
905
(
2016
).
80.
Jacob
,
A. R.
,
E.
Moghimi
, and
G.
Petekidis
, “
Rheological signatures of aging in hard sphere colloidal glasses
,”
Phys. Fluids
31
,
087103
(
2019
).
81.
Mathues
,
W.
,
C.
McIlroy
,
O. G.
Harlen
, and
C.
Clasen
, “
Capillary breakup of suspensions near pinch-off
,”
Phys. Fluids
27
,
093301
(
2015
).
82.
Sadek
,
S. H.
,
H. H.
Najafabadi
, and
F. J.
Galindo-Rosales
, “
Capillary breakup extensional magnetorheometry
,”
J. Rheol.
64
,
55
65
(
2020
).
83.
Eggers
,
J.
, and
E.
Villermaux
, “
Physics of liquid jets
,”
Rep. Prog. Phys.
71
,
36601
36679
(
2008
).
84.
Roché
,
M.
,
H.
Kellay
, and
H. A.
Stone
, “
Heterogeneity and the role of normal stresses during the extensional thinning of non-Brownian shear-thickening fluids
,”
Phys. Rev. Lett.
107
,
134503
(
2011
).
85.
Furbank
,
R. J.
, and
J. F.
Morris
, “
An experimental study of particle effects on drop formation
,”
Phys. Fluids
16
,
1777
(
2004
).
86.
Furbank
,
R. J.
, and
J. F.
Morris
, “
Pendant drop thread dynamics of particle-laden liquids
,”
Int. J. Multiph. Flow
33
,
448
468
(
2007
).
87.
Roylance
,
D.
, Mechanical Properties of Materials (
Massachusetts Institute of Technology
,
Cambridge
,
2008
).
88.
Niedzwiedz
,
K.
,
N.
Willenbacher
, and
R. A. O.
Brummer
, “
How to characterize yield stress fluids with capillary breakup extensional rheometry (CaBER)
,”
Appl. Rheol.
19
(
4
),
41969
(
2009
).
89.
Herschel
,
W. H.
, and
R.
Bulkley
, “
Measurement of consistency as applied to rubber-benzene solutions
,”
Proc. Am. Soc. Test Mater.
26
,
621
(
1926
), available at https://www.astm.org/DIGITAL_LIBRARY/STP/MMR/PAGES/PRO1926-26.htm.
90.
Nguyen
,
Q. D.
and
D. V.
Boger
, “
Measuring the flow properties of yield stress fluids
,”
Annu. Rev. Fluid Mech.
24
(
1
),
47
88
(
1992
).
91.
Barnes
,
H. A.
, “
The yield stress—A review or ‘παντα ρει’—Everything flows?
,”
J. Nonnewton. Fluid Mech.
81
,
133
178
(
1999
).
92.
Bonn
,
D.
, and
M. M.
Denn
, “
Materials science. Yield stress fluids slowly yield to analysis
,”
Science
324
,
1401
1402
(
2009
).
93.
Ovarlez
,
G.
,
S.
Cohen-Addad
,
K.
Krishan
,
J.
Goyon
, and
P.
Coussot
, “
On the existence of a simple yield stress fluid behavior
,”
J. Nonnewton. Fluid Mech.
193
,
68
79
(
2013
).
94.
Jamming
,
H. M.
, “
Two-fluid behavior, and ‘self-filtration’ in concentrated particulate suspensions
,”
Phys. Rev. Lett.
92
,
185506
(
2004
).
95.
Yaoa
,
M.
,
H.
Stephen
, and
G. H. M.
Spiegelbergb
, “
Dynamics of weakly strain-hardening fluids in filament stretching devices
,”
J. Nonnewton. Fluid Mech.
89
,
1
43
(
2000
).
96.
Rasmussen
,
H. K.
,
A. G.
Bejenariu
,
O.
Hassager
, and
D.
Auhl
, “
Experimental evaluation of the pure configurational stress assumption in the flow dynamics of entangled polymer melts
,”
J. Rheol.
54
,
1325
(
2010
).
97.
Morrison
,
F. A.
,
Understanding Rheology
(
Oxford University
,
New York
,
2001
).
98.
Anna
,
S. L.
, and
G. H.
McKinley
, “
Elasto-capillary thinning and breakup of model elastic liquids
,”
J. Rheol.
45
,
115
(
2001
).
99.
Khandavalli
,
S.
, and
J. P.
Rothstein
, “
Extensional rheology of shear-thickening fumed silica nanoparticles dispersed in an aqueous polyethylene oxide solution
,”
J. Rheol.
58
,
411
431
(
2014
).

Supplementary Material

You do not currently have access to this content.