We extend the single-chain slip-spring model developed by Likhtman [Macromolecules 38, 6128 (2005)] to describe the dynamics and rheology of entangled polymers to wormlike micellar solutions by incorporating chain breakage and rejoining, which are the key additional dynamics present in wormlike micellar solutions. We show that the linear rheological properties obtained from this micelle slip-spring model are in good agreement with mesoscopic simulations using the “pointer algorithm” [W. Zou and R. G. Larson, J. Rheol. 58, 681 (2014)] and can be fit to experimental results after an adjustment to correct for the too-high flexibility of the micelles assumed in the slip-spring model. Finally, we use this model to predict the nonlinear rheological properties of entangled wormlike micelles, which are the first predictions that include the effects of entanglements, breakage and rejoining, Rouse modes, and stretch of bead-spring micellar chains with Hookean springs.

1.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
,
1999
).
2.
Cates
,
M. E.
, and
S. J.
Candau
, “
Statics and dynamics of worm-like surfactant micelles
,”
J. Phys. Condens. Matter
2
,
6869
6892
(
1990
).
3.
Dreiss
,
C. A.
, “
Wormlike micelles: Where do we stand? Recent developments, linear rheology and scattering techniques
,”
Soft Matter
3
,
956
970
(
2007
).
4.
Shikata
,
T.
,
H.
Hirata
, and
T.
Kotaka
, “
Micelle formation of detergent molecules in aqueous media: Viscoelastic properties of aqueous cetyltrimethylammonium bromide solutions
,”
Langmuir
3
,
1081
1086
(
1987
).
5.
Rehage
,
H.
, and
H.
Hoffmann
, “
Rheological properties of viscoelastic surfactant systems
,”
J. Phys. Chem.
92
,
4712
4719
(
1988
).
6.
Kern
,
F.
,
R.
Zana
, and
S. J.
Candau
, “
Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium chloride in the presence of sodium salicylate and sodium chloride
,”
Langmuir
7
,
1344
1351
(
1991
).
7.
Khatory
,
A.
,
F.
Lequeux
,
F.
Kern
, and
S. J.
Candau
, “
Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high salt content
,”
Langmuir
9
,
1456
1464
(
1993
).
8.
Berret
,
J. F.
,
J.
Appell
, and
G.
Porte
, “
Linear rheology of entangled wormlike micelles
,”
Langmuir
9
,
2851
2854
(
1993
).
9.
Lerouge
,
S.
, and
J. F.
Berret
, “
Shear-induced transitions and instabilities in surfactant wormlike micelles
,” in
Polymer Characterization. Advances in Polymer Science
(Springer, Berlin, Heidelberg, 2010), Vol. 230,
1
71
.
10.
Olmsted
,
P. D.
, “
Perspectives on shear banding in complex fluids
,”
Rheol. Acta
47
,
283
300
(
2008
).
11.
Wunderlich
,
I.
,
H.
Hoffmann
, and
H.
Rehage
, “
Flow birefringence and rheological measurements on shear induced micellar structures
,”
Rheol. Acta
26
,
532
542
(
1987
).
12.
Berret
,
J. F.
,
S.
Lerouge
, and
J. P.
Decruppe
, “
Kinetics of the shear-thickening transition observed in dilute surfactant solutions and investigated by flow birefringence
,”
Langmuir
18
,
7279
7286
(
2002
).
13.
Decruppe
,
J. P.
,
R.
Cressely
,
R.
Makhloufi
, and
E.
Cappelaere
, “
Flow birefringence experiments showing a shear-banding structure in a CTAB solution
,”
Colloid Polym. Sci.
273
,
346
351
(
1995
).
14.
Hu
,
Y. T.
,
P.
Boltenhagen
, and
D. J.
Pine
, “
Shear thickening in low-concentration solutions of wormlike micelles. I. Direct visualization of transient behavior and phase transitions
,”
J. Rheol.
42
,
1185
1208
(
1998
).
15.
Berret
,
J. F.
,
R.
Gamez-Corrales
,
Y.
Séréro
,
F.
Molino
, and
P.
Lindner
, “
Shear-induced micellar growth in dilute surfactant solutions
,”
Europhys. Lett.
54
,
605
611
(
2001
).
16.
Cappelaere
,
E.
,
J. F.
Berret
,
J. P.
Decruppe
,
R.
Cressely
, and
P.
Lindner
, “
Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: Evidence of a shear-induced phase transition
,”
Phys. Rev. E
56
,
1869
1878
(
1997
).
17.
Prud’homme
,
R. K.
, and
G. G.
Warr
, “
Elongational flow of solutions of rodlike micelles
,”
Langmuir
10
,
3419
3426
(
1994
).
18.
Rothstein
,
J. P.
, “
Transient extensional rheology of wormlike micelle solutions
,”
J. Rheol.
47
,
1227
1247
(
2003
).
19.
Cates
,
M. E.
, and
S. M.
Fielding
, “
Rheology of giant micelles
,”
Adv. Phys.
55
,
799
879
(
2006
).
20.
Cates
,
M. E.
, “
Reptation of living polymers: Dynamics of entangled polymers in the presence of reversible chain-scission reactions
,”
Macromolecules
20
,
2289
2296
(
1987
).
21.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
Oxford
,
1986
).
22.
Zou
,
W.
, and
R. G.
Larson
, “
A mesoscopic simulation method for predicting the rheology of semi-dilute wormlike micellar solutions
,”
J. Rheol.
58
,
681
721
(
2014
).
23.
Zou
,
W.
,
X.
Tang
,
M.
Weaver
,
P.
Koenig
, and
R. G.
Larson
, “
Determination of characteristic lengths and times for wormlike micelle solutions from rheology using a mesoscopic simulation method
,”
J. Rheol.
59
,
903
934
(
2015
).
24.
Zou
,
W.
,
G.
Tan
,
H.
Jiang
,
K.
Vogtt
,
M.
Weaver
,
P.
Koenig
,
G.
Beaucage
, and
R. G.
Larson
, “
From well-entangled to partially-entangled wormlike micelles
,”
Soft Matter
15
,
642
655
(
2019
).
25.
Fielding
,
S. M.
, “
Complex dynamics of shear banded flows
,”
Soft Matter
3
,
1262
1279
(
2007
).
26.
Moorcroft
,
R. L.
, and
S. M.
Fielding
, “
Shear banding in time-dependent flows of polymers and wormlike micelles
,”
J. Rheol.
58
,
103
147
(
2014
).
27.
Germann
,
N.
,
A.
Kate Gurnon
,
L.
Zhou
,
L. P.
Cook
,
A. N.
Beris
, and
N. J.
Wagner
, “
Validation of constitutive modeling of shear banding, threadlike wormlike micellar fluids
,”
J. Rheol.
60
,
983
999
(
2016
).
28.
Vasquez
,
P. A.
,
G. H.
McKinley
, and
L. P.
Cook
, “
A network scission model for wormlike micellar solutions. I. Model formulation and viscometric flow predictions
,”
J. Non-Newton. Fluid Mech.
144
,
122
139
(
2007
).
29.
Pipe
,
C. J.
,
N. J.
Kim
,
P. A.
Vasquez
,
L. P.
Cook
, and
G. H.
McKinley
, “
Wormlike micellar solutions: II. Comparison between experimental data and scission model predictions
,”
J. Rheol.
54
,
881
913
(
2010
).
30.
Zhou
,
L.
,
G. H.
McKinley
, and
L. P.
Cook
, “
Wormlike micellar solutions: III. VCM model predictions in steady and transient shearing flows
,”
J. Non-Newton. Fluid Mech.
211
,
70
83
(
2014
).
31.
Mohammadigoushki
,
H.
,
A.
Dalili
,
L.
Zhou
, and
L. P.
Cook
, “
Transient evolution of flow profiles in a shear banding wormlike micellar solution: Experimental results and a comparison with the VCM model
,”
Soft Matter
15
,
5483
5494
(
2019
).
32.
Adams
,
A. A.
,
M. J.
Solomon
, and
R. G.
Larson
, “
A nonlinear kinetic-rheology model for reversible scission and deformation of unentangled wormlike micelles
,”
J. Rheol.
62
,
1419
1427
(
2018
).
33.
Cates
,
M. E.
, “
Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers)
,”
J. Phys. Chem.
94
,
371
375
(
1990
).
34.
Spenley
,
N. A.
,
M. E.
Cates
, and
T. C. B.
McLeish
, “
Nonlinear rheology of wormlike micelles
,”
Phys. Rev. Lett.
71
,
939
942
(
1993
).
35.
Padding
,
J. T.
,
E. S.
Boek
, and
W. J.
Briels
, “
Dynamics and rheology of wormlike micelles emerging from particulate computer simulations
,”
J. Chem. Phys.
129
,
074903
(
2008
).
36.
Masubuchi
,
Y.
, “
Simulating the flow of entangled polymers
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
11
33
(
2014
).
37.
Masubuchi
,
Y.
,
J.
Takimoto
,
K.
Koyama
,
G.
Ianniruberto
,
G.
Marrucci
, and
F.
Greco
, “
Brownian simulations of a network of reptating primitive chains
,”
J. Chem. Phys.
115
,
4387
4394
(
2001
).
38.
Doi
,
M.
, and
J.
Takimoto
, “
Molecular modelling of entanglement
,”
Phil. Trans. R. Soc. Lond. A
361
,
641
652
(
2003
).
39.
Schieber
,
J. D.
,
J.
Neergaard
, and
S.
Gupta
, “
A full-chain, temporary network model with sliplinks, chain-length fluctuations, chain connectivity and chain stretching
,”
J. Rheol.
47
,
213
233
(
2003
).
40.
Likhtman
,
A. E.
, “
Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rheology, and diffusion
,”
Macromolecules
38
,
6128
6139
(
2005
).
41.
Uneyama
,
T.
, and
Y.
Masubuchi
, “
Multi-chain slip-spring model for entangled polymer dynamics
,”
J. Chem. Phys.
137
,
154902
(
2012
).
42.
Zhu
,
J.
,
A. E.
Likhtman
, and
Z.
Wang
, “
Arm retraction dynamics of entangled star polymers: A forward flux sampling method study
,”
J. Chem. Phys.
147
,
044907
(
2017
).
43.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
Oxford
,
2003
).
44.
Cao
,
J.
,
Z.
Wang
, and
A. E.
Likhtman
, “
Determining tube theory parameters by slip-spring model simulations of entangled star polymers in fixed networks
,”
Polymers
11
,
496
(
2019
).
45.
Uneyama
,
T.
, “
Single chain slip-spring model for fast rheology simulations of entangled polymers on GPU
,”
Nihon Reoroji Gakkaishi
39
,
135
152
(
2011
).
46.
Masubuchi
,
Y.
, “
Effects of degree of freedom below entanglement segment on relaxation of polymer configuration under fast shear in multi-chain slip-spring simulations
,”
J. Chem. Phys.
143
,
224905
(
2015
).
47.
Sgouros
,
A. P.
,
G.
Megariotis
, and
D. N.
Theodorou
, “
Slip-spring model for the linear and nonlinear viscoelastic properties of molten polyethylene derived from atomistic simulations
,”
Macromolecules
50
,
4524
4541
(
2017
).
48.
Andreev
,
M.
,
R. N.
Khaliullin
,
R. J. A.
Steenbakkers
, and
J. D.
Schieber
, “
Approximations of the discrete slip-link model and their effect on nonlinear rheology predictions
,”
J. Rheol.
57
,
535
557
(
2013
).
49.
Ramírez
,
J.
,
S. K.
Sukumaran
, and
A. E.
Likhtman
, “
Significance of cross correlations in the stress relaxation of polymer melts
,”
J. Chem. Phys.
126
,
244904
(
2007
).
50.
Schieber
,
J. D.
,
T.
Indei
, and
R. J. A.
Steenbakkers
, “
Fluctuating entanglements in single-chain mean-field models
,”
Polymers
5
,
643
678
(
2013
).
51.
Del Biondo
,
D.
,
E. M.
Masnada
,
S.
Merabia
,
M.
Couty
, and
J. L.
Barrat
, “
Numerical study of a slip-link model for polymer melts and nanocomposites
,”
J. Chem. Phys.
138
,
194902
(
2013
).
52.
Turner
,
M. S.
, and
M. E.
Cates
, “
Linear viscoelasticity of wormlike micelles: A comparison of micellar reaction kinetics
,”
J. Phys. II France
2
,
503
519
(
1992
).
53.
Likhtman
,
A. E.
, and
T. C. B.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
,
6332
6343
(
2002
).
54.
Ramírez
,
J.
,
S. K.
Sukumaran
, and
A. E.
Likhtman
, “
Hierarchical modeling of entangled polymers
,”
Macromol. Symp.
252
,
119
129
(
2007
).
55.
Ramírez
,
J.
,
S. K.
Sukumaran
,
B.
Vorselaars
, and
A. E.
Likhtman
, “
Efficient on the fly calculation of time correlation functions in computer simulations
,”
J. Chem. Phys.
133
,
154103
(
2010
).
56.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts and Solutions
, Butterworth Series in Chemical Engineering (
Butterworth-Heinemann
,
Sydney
,
1988
).
57.
Mandal
,
T.
, and
R. G.
Larson
, “
Stretch and breakage of wormlike micelles under uniaxial strain: A simulation study and comparison with experimental results
,”
Langmuir
34
,
12600
12608
(
2018
).
58.
Matsumiya
,
Y.
,
H.
Watanabe
,
O.
Urakawa
,
T.
Inoue
, and
Y.
Kwon
, “
Effect of head-to-head association/dissociation on viscoelastic and dielectric relaxation of entangled linear polyisoprene: An experimental test
,”
Macromolecules
53
,
1070
1083
(
2020
).
59.
Sato
,
T.
,
K.
Harada
, and
T.
Taniguchi
, “
Multiscale simulations of flows of a well-entangled polymer melt in a contraction-expansion channel
,”
Macromolecules
52
,
547
567
(
2019
).
60.
Moghadam
,
S.
,
I.
Saha Dalal
, and
R. G.
Larson
, “
Unraveling dynamics of entangled polymers in strong extensional flows
,”
Macromolecules
52
,
1296
1307
(
2019
).
61.
Moghadam
,
S.
,
I.
Saha Dalal
, and
R. G.
Larson
, “
Slip-spring and kink dynamics models for fast extensional flow of entangled polymeric fluids
,”
Polymers
11
,
465
(
2019
).
62.
See the supplementary material at https://doi.org/10.1122/8.0000062 for further detail on the simulations.

Supplementary Material

You do not currently have access to this content.