Polymer chains in both dilute solutions and melts undergo cyclic rotation and retraction, which is known as tumbling, under steady shear flow. However, it is still not known how the individual molecules in melts rotate freely under the constraints caused by surrounding chains. In this work, a Brownian dynamics simulation is used to investigate the influences of the interchain interactions on the polymer chain motions in both dilute solutions and melts under steady shear flow. Compared with previous simulation studies, a greater number of similarities and differences between tumbling in dilute solutions and melts are addressed, and the results explicitly suggest the critical role of the entanglements in melts during shear flow. Three components of the gyration radius in different directions [flow direction (Rgx2), gradient direction (Rgy2), and vorticity direction (Rgz2)] are shown to exhibit different dependencies on the shear rate depending on whether dilute solutions or melts are being examined. However, the characteristic tumbling times τr in both cases are proportional to γ˙2/3. The distributions P(T) of time T that the chains spend in each tumbling cycle show that both states exhibit an exponential decay of P(T/τr) in the high-T region. In the low-T region, P(T/τr) in the melts with variable shear rates are coincident with each other, while P(T/τr) in dilute solutions show different shapes. With respect to the distributions of chain orientation, both cases show the same scaling relationships for shear rates and chain lengths. Based on these findings, main conclusions are as follows. The entanglements still restrict the evolutions of polymer chain configurations despite the number of entanglements decreasing with increased flow strength. The tumbling motion in melts can occur inside the tube, and the chain behaviors inside the confining tubes are rather similar to those in dilute solutions.

1.
Rouse
,
P. E.
, “
A theory of the linear viscoelastic properties of dilute solutions of coiling polymers
,”
J. Chem. Phys.
21
(
7
),
1272
1280
(
1953
).
2.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
New York
,
1986
).
3.
de Gennes
,
P. G.
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
,
572
579
(
1971
).
4.
Marrucci
,
G.
, and
N.
Grizzuti
, “
Fast flows of concentrated polymers: Predictions of the tube model on chain stretching
,”
Gazz. Chim. Ital.
118
,
179
185
(
1988
).
5.
Pearson
,
D.
,
E.
Herbolzheimer
,
N.
Grizzuti
, and
G.
Marrucci
, “
Transient behavior of entangled polymers at high shear rates
,”
J. Polym. Sci. Part B Polym. Phys.
29
,
1589
1597
(
1991
).
6.
Mead
,
D. W.
, and
L. G.
Leal
, “
The reptation model with segmental stretch basic equations and general properties
,”
Rheol. Acta
34
,
339
359
(
1995
).
7.
Marrucci
,
G.
, “
Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule
,”
J. Non-Newtonian Fluid Mech.
62
,
279
289
(
1996
).
8.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
On compatibility of the Cox-Merz rule with the model of Doi and Edwards
,”
J. Non-Newtonian Fluid Mech.
65
,
241
246
(
1996
).
9.
Mead
,
D. W.
,
R. G.
Larson
, and
M.
Doi
, “
A molecular theory for fast flows of entangled polymers
,”
Macromolecules
31
,
7895
7914
(
1998
).
10.
De Gennes
,
P. G.
, “
Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients
,”
J. Chem. Phys.
60
(
12
),
5030
5042
(
1974
).
11.
Smith
,
D. E.
,
H. P.
Babcock
, and
S.
Chu
, “
Single-polymer dynamics in steady shear flow
,”
Science
283
(
5408)
,
1724
1727
(
1999
).
12.
Teixeira
,
R. E.
,
H. P.
Babcock
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Shear thinning and tumbling dynamics of single polymers in the flow-gradient plane
,”
Macromolecules
38
(
2
),
581
592
(
2005
).
13.
Gerashchenko
,
S.
, and
V.
Steinberg
, “
Statistics of tumbling of a single polymer molecule in shear flow
,”
Phys. Rev. Lett.
96
(
3
),
038304
(
2006
).
14.
Harasim
,
M.
,
B.
Wunderlich
,
O.
Peleg
,
M.
Kröger
, and
A. R.
Bausch
, “
Direct observation of the dynamics of semiflexible polymers in shear flow
,”
Phys. Rev. Lett.
110
(
10
),
108302
(
2013
).
15.
Schroeder
,
C. M.
,
R. E.
Teixeira
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Characteristic periodic motion of polymers in shear flow
,”
Phys. Rev. Lett.
95
,
018301
(
2005
).
16.
Schroeder
,
C. M.
,
R. E.
Teixeira
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Dynamics of DNA in the flow-gradient plane of steady shear flow: Observations and simulations
,”
Macromolecules
38
(
5
),
1967
1978
(
2005
).
17.
Dalal
,
I. S.
,
N.
Hoda
, and
R. G.
Larson
, “
Multiple regimes of deformation in shearing flow of isolated polymers
,”
J. Rheol.
56
(
2
),
305
332
(
2012
).
18.
Dalal
,
I. S.
,
A.
Albaugh
,
N.
Hoda
, and
R. G.
Larson
, “
Tumbling and deformation of isolated polymer chains in shearing flow
,”
Macromolecules
45
(
23
),
9493
9499
(
2012
).
19.
Hur
,
J. S.
,
E. S. G.
Shaqfeh
, and
R. G.
Larson
, “
Brownian dynamics simulations of single DNA molecules in shear flow
,”
J. Rheol.
44
(
4
),
713
742
(
2000
).
20.
Dua
,
A.
, and
B. J.
Cherayil
, “
Chain dynamics in steady shear flow
,”
J. Chem. Phys.
112
(
19
),
8707
8714
(
2000
).
21.
Celani
,
A.
,
A.
Puliafito
, and
K.
Turitsyn
, “
Polymers in linear shear flow: A numerical study
,”
Europhys. Lett.
70
(
4
),
464
470
(
2005
).
22.
Chertkov
,
M.
,
I.
Kolokolov
,
V.
Lebedev
, and
K.
Turitsyn
, “
Polymer statistics in a random flow with mean shear
,”
J. Fluid Mech.
531
,
251
260
(
2005
).
23.
Winkler
,
R. G.
, “
Semiflexible polymers in shear flow
,”
Phys. Rev. Lett.
97
(
12
),
128301
(
2006
).
24.
Munk
,
T.
,
O.
Hallatschek
,
C. H.
Wiggins
, and
E.
Frey
, “
Dynamics of semiflexible polymers in a flow field
,”
Phys. Rev. E
74
(
4
),
041911
(
2006
).
25.
Das
,
D.
, and
S.
Sabhapandit
, “
Accurate statistics of a flexible polymer chain in shear flow
,”
Phys. Rev. Lett.
101
(
18
),
188301
(
2008
).
26.
Hur
,
J. S.
,
E. S. G.
Shaqfeh
,
H. P.
Babcock
,
D. E.
Smith
, and
S.
Chu
, “
Dynamics of dilute and semidilute DNA solutions in the start-up of shear flow
,”
J. Rheol.
45
,
421
450
(
2001
).
27.
Huber
,
B.
,
M.
Harasim
,
B.
Wunderlich
,
M.
Kröger
, and
A. R.
Bausch
, “
Microscopic origin of the non-Newtonian viscosity of semiflexible polymer solutions in the semidilute regime
,”
ACS Macro Lett.
3
(
2
),
136
140
(
2014
).
28.
Teixeira
,
R. E.
,
A. K.
Dambal
,
D. H.
Richter
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
The individualistic dynamics of entangled DNA in solution
,”
Macromolecules
40
(
7
),
2461
2476
(
2007
).
29.
Baig
,
C.
,
V. G.
Mavrantzas
, and
M.
Kröger
, “
Flow effects on melt structure and entanglement network of linear polymers: Results from a nonequilibrium molecular dynamics simulation study of a polyethylene melt in steady shear
,”
Macromolecules
43
(
16
),
6886
6902
(
2010
).
30.
Yamamoto
,
R.
, and
A.
Onuki
, “
Dynamics and rheology of a supercooled polymer melt in shear flow
,”
J. Chem. Phys.
117
(
5
),
2359
2367
(
2002
).
31.
Kim
,
J. M.
,
B. J.
Edwards
,
D. J.
Keffer
, and
B.
Khomami
, “
Single-chain dynamics of linear polyethylene liquids under shear flow
,”
Phys. Lett. A
373
(
7
),
769
772
(
2009
).
32.
Nafar Sefiddashti
,
M. H.
,
B. J.
Edwards
, and
B.
Khomami
, “
Individual chain dynamics of a polyethylene melt undergoing steady shear flow
,”
J. Rheol.
59
(
1
),
119
153
(
2015
).
33.
Nafar Sefiddashti
,
M. H.
,
B. J.
Edwards
, and
B.
Khomami
, “
Steady shearing flow of a moderately entangled polyethylene liquid
,”
J. Rheol.
60
(
6
),
1227
1244
(
2016
).
34.
Mohagheghi
,
M.
, and
B.
Khomami
, “
Elucidating the flow-microstructure coupling in the entangled polymer melts. Part I: Single chain dynamics in shear flow
,”
J. Rheol.
60
(
5
),
849
859
(
2016
).
35.
Edwards
,
C. N.
,
M. H.
Nafar Sefiddashti
,
B. J.
Edwards
, and
B.
Khomami
, “
In-plane and out-of-plane rotational motion of individual chain molecules in steady shear flow of polymer melts and solutions
,”
J. Mol. Graphics Model.
81
,
184
196
(
2018
).
36.
Nafar Sefiddashti
,
M. H.
,
B. J.
Edwards
, and
B.
Khomami
, “
Individual molecular dynamics of an entangled polyethylene melt undergoing steady shear flow: Steady-state and transient dynamics
,”
Polymers
11
(
3
),
476
(
2019
).
37.
Kim
,
J. M.
,
P. S.
Stephanou
,
B. J.
Edwards
, and
B.
Khomami
, “
A mean-field anisotropic diffusion model for unentangled polymeric liquids and semi-dilute solutions: Model development and comparison with experimental and simulation data
,”
J. Non-Newtonian Fluid Mech.
166
(
11
),
593
606
(
2011
).
38.
Costanzo
,
S.
,
Q.
Huang
,
G.
Ianniruberto
,
G.
Marrucci
,
O.
Hassager
, and
D.
Vlassopoulos
, “
Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements
,”
Macromolecules
49
(
10
),
3925
3935
(
2016
).
39.
Curtiss
,
C. F.
, and
R. B.
Bird
, “
A kinetic theory for polymer melts. I. The equation for the single-link orientational distribution function
,”
J. Chem. Phys.
74
(
3
),
2016
2025
(
1981
).
40.
Stephanou
,
P. S.
,
T.
Schweizer
, and
M.
Kröger
, “
Communication: Appearance of undershoots in start-up shear: Experimental findings captured by tumbling-snake dynamics
,”
J. Chem. Phys.
146
(
16
),
161101
(
2017
).
41.
Sefiddashti
,
M. H. N.
,
B. J.
Edwards
, and
B.
Khomami
, “
Evaluation of reptation-based modeling of entangled polymeric fluids including chain rotation via nonequilibrium molecular dynamics simulation
,”
Phys. Rev. Fluids
2
(
8
),
083301
(
2017
).
42.
Kröger
,
M.
, “
Shortest multiple disconnected path for the analysis of entanglements in two-and three-dimensional polymeric systems
,”
Comput. Phys. Commun.
168
(
3
),
209
232
(
2005
).
43.
Shanbhag
,
S.
, and
M.
Kröger
, “
Primitive path networks generated by annealing and geometrical methods: Insights into differences
,”
Macromolecules
40
(
8
),
2897
2903
(
2007
).
44.
Cho
,
S.
,
J. M.
Kim
, and
C.
Baig
, “
Scaling characteristics of rotational dynamics and rheology of linear polymer melts in shear flow
,”
Macromolecules
53
(
8
),
3030
3041
(
2020
).
45.
Kremer
,
K.
, and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
(
8
),
5057
5086
(
1990
).
46.
Takahashi
,
K.
,
R.
Nishimura
,
K.
Yasuoka
, and
Y.
Masubuchi
, “
Molecular dynamics simulations for resolving scaling laws of polyethylene melts
,”
Polymers
9
(
1
),
24
(
2017
).
47.
Flory
,
P. J.
,
Principles of Polymer Chemistry
(
Cornell University Press
, Ithaca, NY,
1953
).
48.
Freed
,
K. F.
,
Renormalization Group Theory of Macromolecules
(
Wiley
,
New York
,
1987
).
49.
Ahlrichs
,
P.
, and
B.
Dünweg
, “
Simulation of a single polymer chain in the dilute solutions by combining lattice Boltzmann and molecular dynamics
,”
J. Chem. Phys.
111
(
17
),
8225
8239
(
1999
).
50.
Mays
,
J. W.
,
N.
Hadjichristidis
, and
L. J.
Fetters
, “
Solvent and temperature influences on polystyrene unperturbed dimensions
,”
Macromolecules
18
(
11
),
2231
2236
(
1985
).
51.
De Gennes
,
P. G.
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
, Ithaca, NY,
1979
), Vol. 38, pp.
165
203
.
52.
Pütz
,
M.
,
K.
Kremer
, and
G. S.
Grest
, “
What is the entanglement length in a polymer melt?
,”
Europhys. Lett.
49
(
6
),
735
741
(
2000
).
53.
Kreer
,
T.
,
J.
Baschnagel
,
M.
Müller
, and
K.
Binder
, “
Monte Carlo simulation of long chain polymer melts: Crossover from Rouse to reptation dynamics
,”
Macromolecules
34
(
4
),
1105
1117
(
2001
).
54.
Likhtman
,
A. E.
,
S. K.
Sukumaran
, and
J.
Ramirez
, “
Linear viscoelasticity from molecular dynamics simulation of entangled polymers
,”
Macromolecules
40
(
18
),
6748
6757
(
2007
).
55.
Ramos
,
J.
,
J. F.
Vega
,
D. N.
Theodorou
, and
J.
Martinez-Salazar
, “
Entanglement relaxation time in polyethylene: Simulation versus experimental data
,”
Macromolecules
41
(
8
),
2959
2962
(
2008
).
56.
Wang
,
Z.
, and
R. G.
Larson
, “
Constraint release in entangled binary blends of linear polymers: A molecular dynamics study
,”
Macromolecules
41
(
13
),
4945
4960
(
2008
).
57.
Wang
,
Z.
,
A. E.
Likhtman
, and
R. G.
Larson
, “
Segmental dynamics in entangled linear polymer melts
,”
Macromolecules
45
(
8
),
3557
3570
(
2012
).
58.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
59.
Sendner
,
C.
, and
R. R.
Netz
, “
Single flexible and semiflexible polymers at high shear: Non-monotonic and non-universal stretching response
,”
Eur. Phys. J. E
30
(
1
),
75
81
(
2009
).
60.
Baig
,
C.
, and
V. A.
Harmandaris
, “
Quantitative analysis on the validity of a coarse-grained model for nonequilibrium polymeric liquids under flow
,”
Macromolecules
43
(
7
),
3156
3160
(
2010
).
61.
Moore
,
J. D.
,
S. T.
Cui
, and
H. D.
Cochran
, and
P. T.
Cummings
, “
A molecular dynamics study of a short-chain polyethylene melt: I. Steady-state shear
,”
J. Non-Newtonian Fluid Mech.
93
(
1
),
83
99
(
2000
).
62.
Kim
,
J. M.
, and
C.
Baig
, “
Precise analysis of polymer rotational dynamics
,”
Sci. Rep.
6
,
19127
(
2016
).
You do not currently have access to this content.