Here, we report for the first time that resonance in dynamic-mode cantilever sensors persists in hydrogels and enables the real-time characterization of hydrogel viscoelastic properties and the continuous monitoring of sol-gel phase transitions (i.e., gelation and dissolution processes). Real-time tracking of piezoelectric-excited millimeter cantilever (PEMC) sensor resonant frequency (fair = 55.4 ± 8.8 kHz; n = 5 sensors) and quality factor (Q; Qair = 23.8 ± 1.5) enabled continuous monitoring of high-frequency hydrogel shear storage and loss moduli (G′f and G″f, respectively) calculated by sensor data and fluid–structure interaction models. Changes in the sensor phase angle, quality factor, and high-frequency shear moduli obtained at the resonant frequency (G′f and G″f) correlated with low-frequency moduli obtained at 1 Hz using dynamic mechanical analysis. Characterization studies were performed using physically and chemically crosslinked hydrogel systems, including gelatin hydrogels (6–10 wt. %) and alginate hydrogels (0.25–0.75 wt. %). The sensor exhibited a dynamic range from the rheological properties of inviscid solutions to hydrogels with high-frequency moduli of 80 kPa and low-frequency moduli of 26 kPa. The sensor exhibited a limit of detection of 260 Pa and 1.9 kPa for changes in hydrogel storage modulus (E′) based on the sensor’s phase angle and quality factor responses, respectively. We also show that sensor data enable quantitative characterization of gelation process dynamics using a modified Hill model. This work suggests that cantilever sensors provide a promising platform for the sensor-based characterization of hydrogels, such as quantification of viscoelastic properties and real-time monitoring of gelation processes.

1.
Madhumitha
,
G.
,
J.
Fowsiya
, and
S. M.
Roopan
,
Emerging technology in medical applications of hydrogel
, in
Hydrogels: Recent Advances
, edited by
V. K.
Thakur
and
M. K.
Thakur
(
Springer Singapore
,
Singapore
,
2018
), pp.
197
218
.
2.
Wu
,
H.
,
G.
Yu
,
L.
Pan
,
N.
Liu
,
M. T.
McDowell
,
Z.
Bao
, and
Y.
Cui
, “
Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
,”
Nat. Commun.
4
,
1943
(
2013
).
3.
Stephan
,
A. M.
, “
Review on gel polymer electrolytes for lithium batteries
,”
Eur. Polym. J.
42
,
21
42
(
2006
).
4.
Xu
,
Y.
,
Z.
Lin
,
X.
Huang
,
Y.
Wang
,
Y.
Huang
, and
X.
Duan
, “
Functionalized graphene hydrogel-based high-performance supercapacitors
,”
Adv. Mater.
25
,
5779
5784
(
2013
).
5.
Gupta
,
P.
,
K.
Vermani
, and
S.
Garg
, “
Hydrogels: From controlled release to pH-responsive drug delivery
,”
Drug Discov. Today
7
,
569
579
(
2002
).
6.
Tibbitt
,
M. W.
, and
K. S.
Anseth
, “
Hydrogels as extracellular matrix mimics for 3D cell culture
,”
Biotechnol. Bioeng.
103
,
655
663
(
2009
).
7.
Lee
,
J.
,
M. J.
Cuddihy
, and
N. A.
Kotov
, “
Three-dimensional cell culture matrices: State of the art
,”
J. Tissue Eng. B
14
,
61
86
(
2008
).
8.
Haring
,
A. P.
,
H.
Sontheimer
, and
B. N.
Johnson
, “
Microphysiological human brain and neural systems-on-a-chip: Potential alternatives to small animal models and emerging platforms for drug discovery and personalized medicine
,”
Stem Cell Rev. Rep.
13
,
381
406
(
2017
).
9.
Haring
,
A. P.
,
E. G.
Thompson
,
Y.
Tong
,
S.
Laheri
,
E.
Cesewski
,
H.
Sontheimer
, and
B. N.
Johnson
, “
Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues
,”
Biofabrication
11
,
025009
(
2019
).
10.
Duan
,
B.
,
L. A.
Hockaday
,
K. H.
Kang
, and
J. T.
Butcher
, “
3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
,”
J. Biomed. Mater. Res. A
101
,
1255
1264
(
2013
).
11.
Highley
,
C. B.
,
C. B.
Rodell
, and
J. A.
Burdick
, “
Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels
,”
Adv. Mater.
27
,
5075
5079
(
2015
).
12.
Li
,
J.
, and
D. J.
Mooney
, “
Designing hydrogels for controlled drug delivery
,”
Nat. Rev. Mater.
1
,
16071
(
2016
).
13.
Lee
,
K. Y.
, and
D. J.
Mooney
, “
Hydrogels for tissue engineering
,”
Chem. Rev.
101
,
1869
1880
(
2001
).
14.
Drury
,
J. L.
, and
D. J.
Mooney
, “
Hydrogels for tissue engineering: Scaffold design variables and applications
,”
Biomaterials
24
,
4337
4351
(
2003
).
15.
Gerlach
,
G.
,
M.
Guenther
,
J.
Sorber
,
G.
Suchaneck
,
K.-F.
Arndt
, and
A.
Richter
, “
Chemical and pH sensors based on the swelling behavior of hydrogels
,”
Sens. Actuators B Chem.
111
,
555
561
(
2005
).
16.
Richter
,
A.
,
G.
Paschew
,
S.
Klatt
,
J.
Lienig
,
K.-F.
Arndt
, and
H.-J. P.
Adler
, “
Review on hydrogel-based pH sensors and microsensors
,”
Sensors
8
,
561
581
(
2008
).
17.
Gladman
,
A. S.
,
E. A.
Matsumoto
,
R. G.
Nuzzo
,
L.
Mahadevan
, and
J. A.
Lewis
, “
Biomimetic 4D printing
,”
Nat. Mater.
15
,
413
418
(
2016
).
18.
Bakarich
,
S. E.
,
R.
Gorkin
 III
,
M. I. H.
Panhuis
, and
G. M.
Spinks
, “
4D printing with mechanically robust, thermally actuating hydrogels
,”
Macromol. Rapid Commun.
36
,
1211
1217
(
2015
).
19.
de Pablo
,
J. J.
,
N. E.
Jackson
,
M. A.
Webb
,
L.-Q.
Chen
,
J. E.
Moore
,
D.
Morgan
,
R.
Jacobs
,
T.
Pollock
,
D. G.
Schlom
,
E. S.
Toberer
,
J.
Analytis
,
I.
Dabo
,
D. M.
DeLongchamp
,
G. A.
Fiete
,
G. M.
Grason
,
G.
Hautier
,
Y.
Mo
,
K.
Rajan
,
E. J.
Reed
,
E.
Rodriguez
,
V.
Stevanovic
,
J.
Suntivich
,
K.
Thoron
, and
J.-C.
Zhao
, “
New frontiers for the materials genome initiative
,”
Npj Comput. Mater.
5
,
41
(
2019
).
20.
Zhang
,
X.
, and
Y.
Xiang
, “
Combinatorial approaches for high-throughput characterization of mechanical properties
,”
J. Materiomics
3
,
209
220
(
2017
).
21.
Green
,
M. L.
,
C.
Choi
,
J.
Hattrick-Simpers
,
A.
Joshi
,
I.
Takeuchi
,
S. C.
Barron
,
E.
Campo
,
T.
Chiang
,
S.
Empedocles
,
J. M.
Gregoire
,
A. G.
Kusne
,
J.
Martin
,
A.
Mehta
,
K.
Persson
,
Z.
Trautt
,
J.
Van Duren
, and
A.
Zakutayev
, “
Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies
,”
Appl. Phys. Rev.
4
,
011105
(
2017
).
22.
Hoffman
,
A. S.
, “
Hydrogels for biomedical applications
,”
Adv. Drug Deliv. Rev.
64
,
18
23
(
2012
).
23.
Zhang
,
Y. S.
, and
A.
Khademhosseini
, “
Advances in engineering hydrogels
,”
Science
356
,
eaaf3627
(
2017
).
24.
Brinson
,
H. F.
, and
L. C.
Brinson
,
Polymer Engineering Science and Viscoelasticity
(
Springer
,
Boston
,
MA
,
2015
).
25.
Jakoby
,
B.
, and
M. J.
Vellekoop
, “
Physical sensors for liquid properties
,”
IEEE Sens. J.
11
,
3076
3085
(
2011
).
26.
Abu-Zahra
,
N. H.
, “
Real-time viscosity and density measurements of polymer melts using dielectric and ultrasound sensors fusion
,”
Mechatronics
14
,
789
803
(
2004
).
27.
Kim
,
H. G.
, “
Dielectric cure monitoring for glass/polyester prepreg composites
,”
Compos. Struct.
57
,
91
99
(
2002
).
28.
Jain
,
M.
,
S.
Schmidt
, and
C. A.
Grimes
, “
Magneto-acoustic sensors for measurement of liquid temperature, viscosity and density
,”
Appl. Acoust.
62
,
1001
1011
(
2001
).
29.
Mather
,
M. L.
,
M.
Rides
,
C. R.
Allen
, and
P. E.
Tomlins
, “
Liquid viscoelasticity probed by a mesoscale piezoelectric bimorph cantilever
,”
J. Rheol.
56
,
99
112
(
2012
).
30.
Johnson
,
B. N.
, and
R.
Mutharasan
, “
Biosensing using dynamic-mode cantilever sensors: A review
,”
Biosens. Bioelectron.
32
,
1
18
(
2012
).
31.
Lang
,
H. P.
,
M.
Hegner
, and
C.
Gerber
, “
Cantilever array sensors
,”
Mater. Today
8
,
30
36
(
2005
).
32.
Raiteri
,
R.
,
M.
Grattarola
,
H.-J.
Butt
, and
P.
Skládal
, “
Micromechanical cantilever-based biosensors
,”
Sens. Actuators B Chem.
79
,
115
126
(
2001
).
33.
Craighead
,
H.
, “
Nanomechanical systems: Measuring more than mass
,”
Nat. Nanotechnol.
2
,
18
(
2007
).
34.
Fritz
,
J.
, “
Cantilever biosensors
,”
Analyst
133
,
855
1863
(
2008
).
35.
Singamaneni
,
S.
,
M. C.
LeMieux
,
H. P.
Lang
,
C.
Gerber
,
Y.
Lam
,
S.
Zauscher
,
P. G.
Datskos
,
N. V.
Lavrik
,
H.
Jiang
,
R. R.
Naik
,
T. J.
Bunning
, and
V. V.
Tsukruk
, “
Bimaterial microcantilevers as a hybrid sensing platform
,”
Adv. Mater.
20
,
653
680
(
2008
).
36.
Chu
,
W.
,
Technical Report No. 2, DTMB, Contract NObs-86396
,
Southwest Research Institute
,
San Antonio
,
TX
,
94
,
1963
.
37.
Sader
,
J. E.
, “
Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope
,”
J. Appl. Phys.
84
,
64
76
(
1998
).
38.
Chon
,
J. W.
,
P.
Mulvaney
, and
J. E.
Sader
, “
Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids
,”
J. Appl. Phys.
87
,
3978
3988
(
2000
).
39.
Boskovic
,
S.
,
J.
Chon
,
P.
Mulvaney
, and
J.
Sader
, “
Rheological measurements using microcantilevers
,”
J. Rheol.
46
,
891
899
(
2002
).
40.
Maali
,
A.
,
C.
Hurth
,
R.
Boisgard
,
C.
Jai
,
T.
Cohen-Bouhacina
, and
J.-P.
Aimé
, “
Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids
,”
J. Appl. Phys.
97
,
074907
(
2005
).
41.
Belmiloud
,
N.
,
I.
Dufour
,
L.
Nicu
,
A.
Colin
, and
J.
Pistre
, IEEE Sensors J.
2006
,
753
756
.
42.
Johnson
,
B. N.
, and
R.
Mutharasan
, “
Persistence of bending and torsional modes in piezoelectric-excited millimeter-sized cantilever (PEMC) sensors in viscous liquids-1 to 103 cP
,”
J. Appl. Phys.
109
,
066105
(
2011
).
43.
Sharma
,
H.
,
R. S.
Lakshmanan
,
B. N.
Johnson
, and
R.
Mutharasan
, “
Piezoelectric cantilever sensors with asymmetric anchor exhibit picogram sensitivity in liquids
,”
Sens. Actuators B Chem.
153
,
64
70
(
2011
).
44.
Dufour
,
I.
,
A.
Maali
,
Y.
Amarouchene
,
C.
Ayela
,
B.
Caillard
,
A.
Darwiche
,
M.
Guirardel
,
H.
Kellay
,
E.
Lemaire
,
F.
Mathieu
,
C.
Pellet
,
D.
Saya
,
M.
Youssry
,
L.
Nicu
, and
A.
Colin
, “
The microcantilever: A versatile tool for measuring the rheological properties of complex fluids
,”
J. Sens.
2012
,
719898
(
2012
).
45.
Itoh
,
T.
,
C.
Lee
, and
T.
Suga
, “
Deflection detection and feedback actuation using a self-excited piezoelectric Pb (Zr, Ti) O3 microcantilever for dynamic scanning force microscopy
,”
Appl. Phys. Lett.
69
,
2036
2038
(
1996
).
46.
Belalia
,
F.
, and
N.-E.
Djelali
, “
Rheological properties of sodium alginate solutions
,”
Rev. Roum. Chim.
59
,
135
145
(
2014
).
47.
Johnson
,
B. N.
, and
R.
Mutharasan
, “
The origin of low-order and high-order impedance-coupled resonant modes in piezoelectric-excited millimeter-sized cantilever (PEMC) sensors: Experiments and finite element models
,”
Sens. Actuators B Chem.
155
,
868
77
(
2011
).
48.
Johnson
,
B. N.
,
H.
Sharma
, and
R.
Mutharasan
, “
Torsional and lateral resonant modes of cantilevers as biosensors: Alternatives to bending modes
,”
Anal. Chem.
85
,
1760
1766
(
2013
).
49.
Kuo
,
C. K.
, and
P. X.
Ma
, “
Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties
,”
Biomaterials
22
,
511
521
(
2001
).
50.
Nemir
,
S.
,
H. N.
Hayenga
, and
J. L.
West
, “
PEGDA hydrogels with patterned elasticity: Novel tools for the study of cell response to substrate rigidity
,”
Biotechnol. Bioeng.
105
,
636
644
(
2010
).
51.
Djabourov
,
M.
,
J.
Leblond
, and
P.
Papon
, “
Gelation of aqueous gelatin solutions. I. Structural investigation
,”
J. Phys.
49
,
319
332
(
1988
).
52.
Fonkwe
,
L. G.
,
G.
Narsimhan
, and
A. S.
Cha
, “
Characterization of gelation time and texture of gelatin and gelatin–polysaccharide mixed gels
,”
Food Hydrocoll.
17
,
871
883
(
2003
).
53.
Bonino
,
C. A.
,
J. E.
Samorezov
,
O.
Jeon
,
E.
Alsberg
, and
S. A.
Khan
, “
Real-time in situ rheology of alginate hydrogel photocrosslinking
,”
Soft Matter
7
,
11510
11517
(
2011
).
54.
Tosh
,
S. M.
, and
A. G.
Marangoni
, “
Determination of the maximum gelation temperature in gelatin gels
,”
Appl. Phys. Lett.
84
,
4242
4244
(
2004
).
55.
Janmey
,
P. A.
,
P. C.
Georges
, and
S.
Hvidt
, “
Basic rheology for biologists
,”
Methods Cell Biol.
83
,
1
27
(
2007
).
56.
Ahmed
,
J.
,
Rheological Properties of Gelatin and Advances in Measurement: Advances in Food Rheology and Its Applications
(
Elsevier
,
Netherlands
,
2017
), pp.
377
404
.
57.
Simon
,
A.
,
Y.
Grohens
,
L.
Vandanjon
,
P.
Bourseau
,
E.
Balnois
, and
G.
Levesque
, “
A comparative study of the rheological and structural properties of gelatin gels of mammalian and fish origins
,”
Macromol. Symp.
2003
,
331
338
(
2003
).
58.
Duan
,
P.
,
N.
Kandemir
,
J.
Wang
, and
J.
Chen
, “
Rheological characterization of alginate based hydrogels for tissue engineering
,”
MRS Adv.
2
,
1309
1314
(
2017
).
59.
de Carvalho
,
W.
, and
M.
Djabourov
, “
Physical gelation under shear for gelatin gels
,”
Rheol. Acta
36
,
591
609
(
1997
).
60.
Calvet
,
D.
,
J. Y.
Wong
, and
S.
Giasson
, “
Rheological monitoring of polyacrylamide gelation: Importance of cross-link density and temperature
,”
Macromolecules
37
,
7762
7771
(
2004
).
61.
Hill
,
A. V.
, “
The combinations of haemoglobin with oxygen and with carbon monoxide. I
,”
Biochem. J.
7
,
471
(
1913
).
62.
Harini
,
M.
, and
A. P.
Deshpande
, “
Rheology of poly (sodium acrylate) hydrogels during cross-linking with and without cellulose microfibrils
,”
J. Rheol.
53
,
31
47
(
2009
).
63.
Junior
,
E. A. P.
,
J. L.
Dávila
, and
M. A.
d'Ávila
, “
Rheological studies on nanocrystalline cellulose/alginate suspensions
,”
J. Mol. Liq.
277
,
418
423
(
2019
).
64.
Boontheekul
,
T.
,
H.-J.
Kong
, and
D. J.
Mooney
, “
Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution
,”
Biomaterials
26
,
2455
2465
(
2005
).
65.
Nowack
,
B.
, and
L.
Sigg
, “
Adsorption of EDTA and metal–EDTA complexes onto goethite
,”
J. Colloid Interface Sci.
177
,
106
121
(
1996
).
66.
See supplementary material at https://10.1122/8.0000009 for the impedance spectra associated with cantilever sensors in air, water, and polymer solutions, sensor data associated with the photocuring of PEGDA hydrogels characterized by real-time monitoring of high-frequency viscoelastic properties, and predicted gelation kinetics for the chemical gelation of alginate solutions.

Supplementary Material

You do not currently have access to this content.