Chemical crosslinking, physical associating, and filler filling play vital roles in nonlinear responses of rubbers under large amplitude oscillatory shear (LAOS). Herein, a systematical investigation was performed for polyisoprene rubber vulcanizates and compounds on the framework of LAOS analytical methods to quantify intra- and intercycle nonlinearities. It is shown that the Payne effect is featured by intercycle strain softening and intracycle hardening. Furthermore, chemical crosslinking and intermolecular association cause marked shear thickening at the medium range of rate amplitude, which is related to the nonideally crosslinked structures from numerical studies. Fillers can promote nonlinear viscoelastic behaviors. In compounds, modulus recovery during cyclic oscillatory shear deformation is not directly related to the reorganization of the filler phase, which is testified by simultaneous measurements of rheological responses and electrical resistivity during increasing-decreasing amplitude sweep cycles.

1.
Kumar
,
S. K.
,
B. C.
Benicewicz
,
R. A.
Vaia
, and
K. I.
Winey
, “
50th anniversary perspective: Are polymer nanocomposites practical for applications?
Macromolecules
50
,
714
731
(
2017
).
2.
Akiba
,
M.
, and
A.
Hashim
, “
Vulcanization and crosslinking in elastomers
,”
Prog. Polym. Sci.
22
,
475
521
(
1997
).
3.
Chen
,
Q.
,
S.
Gong
,
J.
Moll
,
D.
Zhao
,
S. K.
Kumar
, and
R. H.
Colby
, “
Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network
,”
ACS Macro Lett.
4
,
398
402
(
2015
).
4.
Gusev
,
A. A
., “
Micromechanical mechanism of reinforcement and losses in filled rubbers
,”
Macromolecules
39
,
5960
5962
(
2006
).
5.
Payne
,
A. R
., “
The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I
,”
J. Appl. Polym. Sci.
6
,
57
63
(
1962
).
6.
Payne
,
A. R
., “
The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part II
,”
J. Appl. Polym. Sci.
6
,
368
372
(
1962
).
7.
Chazeau
,
L.
,
J.
Brown
,
L.
Yanyo
, and
S.
Sternstein
, “
Modulus recovery kinetics and other insights into the Payne effect for filled elastomers
,”
Polym. Compos.
21
,
202
222
(
2000
).
8.
Hyun
,
K.
,
S. H.
Kim
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear as a way to classify the complex fluids
,”
J. Non-Newton. Fluid Mech.
107
,
51
65
(
2002
).
9.
Fan
,
X.
,
H.
Xu
,
Q.
Zhang
,
Y.
Song
, and
Q.
Zheng
, “
Insight into the weak strain overshoot of carbon black filled natural rubber
,”
Polymer
167
,
109
117
(
2019
).
10.
Xu
,
H.
,
X.
Xia
,
M.
Hussain
,
Y.
Song
, and
Q.
Zheng
, “
Linear and nonlinear rheological behaviors of silica filled nitrile butadiene rubber
,”
Polymer
156
,
222
227
(
2018
).
11.
Papon
,
A.
,
S.
Merabia
,
L.
Guy
,
F.
Lequeux
,
H.
Montes
,
P.
Sotta
, and
D. R.
Long
, “
Unique nonlinear behavior of nano-filled elastomers: From the onset of strain softening to large amplitude shear deformations
,”
Macromolecules
45
,
2891
2904
(
2012
).
12.
Meera
,
A. P.
,
S.
Said
,
Y.
Grohens
, and
S.
Thomas
, “
Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites
,”
J. Phys. Chem. C
113
,
17997
18002
(
2009
).
13.
Martinetti
,
L.
,
O.
Carey-De La Torre
,
K. S.
Schweizer
, and
R. H.
Ewoldt
, “
Inferring the nonlinear mechanisms of a reversible network
,”
Macromolecules
51
,
8772
8789
(
2018
).
14.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
15.
Ewoldt
,
R. H.
,
A.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
16.
Xiong
,
W.
, and
X.
Wang
, “
Linear-nonlinear dichotomy of rheological responses in particle-filled polymer melts
,”
J. Rheol.
62
,
171
181
(
2018
).
17.
Robertson
,
C. G.
, and
X.
Wang
, “
Isoenergetic jamming transition in particle-filled systems
,”
Phys. Rev. Lett.
95
,
075703
(
2005
).
18.
Heinrich
,
G.
, and
M.
Klüppel
,
Recent advances in the theory of filler networking in elastomers
, in
Filled Elastomers Drug Delivery Systems
, edited by
S. L.
Kwang
(
Springer
,
Berlin
,
2002
).
19.
Lin
,
C. R.
, and
Y. D.
Lee
, “
Strain-dependent dynamic properties of filled rubber network systems
,”
Macromol. Theory Simul.
5
,
1075
1104
(
1996
).
20.
Meier
,
J. G.
, and
M.
Klüppel
, “
Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy
,”
Macromol. Mater. Eng.
293
,
12
38
(
2008
).
21.
Niedermeier
,
W.
,
J.
Frohlich
, and
H. D.
Luginsland
, “
Reinforcement mechanism in the rubber matrix by active fillers
,”
Kautsch. Gummi Kunstst.
55
,
356
356
(
2002
).
22.
Funt
,
J
., “
Dynamic testing and reinforcement of rubber
,”
Rubber Chem. Technol.
61
,
842
865
(
1988
).
23.
Maier
,
P.
, and
D.
Goritz
, “
Molecular interpretation of the Payne effect
,”
Kautsch. Gummi Kunstst.
49
,
18
21
(
1996
).
24.
Song
,
Y.
,
L.
Zeng
, and
Q.
Zheng
, “
Reconsideration of the rheology of silica filled natural rubber compounds
,”
J. Phys. Chem. B
121
,
5867
5875
(
2017
).
25.
Wilhelm
,
M
., “
Fourier-transform rheology
,”
Macromol. Mater. Eng.
287
,
83
105
(
2002
).
26.
Giacomin
,
A. J.
, and
J. M.
Dealy
,
Large-amplitude oscillatory shear
, in
Techniques in Rheological Measurement
(
Springer
,
Dordrecht
,
1993
).
27.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics
(
Wiley
, New York,
1987
).
28.
Hyun
,
K.
,
J. G.
Nam
,
M.
Wilhelm
,
K. H.
Ahn
, and
S. J.
Lee
, “
Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow
,”
Korea-Aust. Rheol. J.
15
,
97
105
(
2003
).
29.
Hatzikiriakos
,
S. G.
, and
J. M.
Dealy
, “
Role of slip and fracture in the oscillating flow of HDPE in a capillary
,”
J. Rheol.
36
,
845
884
(
1992
).
30.
Hyun
,
K.
, and
W.
Kim
, “
A new non-linear parameter Q from FT-rheology under nonlinear dynamic oscillatory shear for polymer melts system
,”
Korea-Aust. Rheol. J.
23
,
227
235
(
2011
).
31.
Neidhöfer
,
T.
,
M.
Wilhelm
, and
B.
Debbaut
, “
Fourier-transform rheology experiments and finite-element simulations on linear polystyrene solutions
,”
J. Rheol.
47
,
1351
1371
(
2003
).
32.
Cho
,
K. S.
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
A geometrical interpretation of large amplitude oscillatory shear response
,”
J. Rheol.
49
,
747
758
(
2005
).
33.
Ewoldt
,
R. H.
,
P.
Winter
,
J.
Maxey
, and
G. H.
McKinley
, “
Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
,”
Rheol. Acta
49
,
191
212
(
2010
).
34.
Bharadwaj
,
N. A.
, and
R. H.
Ewoldt
, “
Constitutive model fingerprints in medium-amplitude oscillatory shear
,”
J. Rheol.
59
,
557
592
(
2015
).
35.
Martinetti
,
L.
, and
R. H.
Ewoldt
, “
Time-strain separability in medium-amplitude oscillatory shear
,”
Phys. Fluids
31
,
021213
(
2019
).
36.
Leblanc
,
J. L
., “
Nonlinear viscoelastic characterization of molten thermoplastic vulcanizates (TPV) through large amplitude harmonic experiments
,”
Rheol. Acta
46
,
1013
1027
(
2007
).
37.
Leblanc
,
J. L
., “
Investigating the non-linear viscoelastic behavior of filled rubber compounds through Fourier transform rheometry
,”
Rubber Chem. Technol.
78
,
54
75
(
2005
).
38.
Leblanc
,
J. L.
, and
C.
de la Chapelle
, “
Characterizing gum elastomers by Fourier transform rheometry
,”
Rubber Chem. Technol.
76
,
979
1000
(
2003
).
39.
Ulmer
,
J
., “
Strain dependence of dynamic mechanical properties of carbon black-filled rubber compounds
,”
Rubber Chem. Technol.
69
,
15
47
(
1996
).
40.
Hyun
,
K.
,
H. T.
Lim
, and
K. H.
Ahn
, “
Nonlinear response of polypropylene (PP)/clay nanocomposites under dynamic oscillatory shear flow
,”
Korea-Aust. Rheol. J.
24
,
113
120
(
2012
).
41.
Tanaka
,
F.
, and
S.
Edwards
, “
Viscoelastic properties of physically crosslinked networks: Part 1. Non-linear stationary viscoelasticity
,”
J. Non-Newton. Fluid Mech.
43
,
247
271
(
1992
).
42.
Tanaka
,
F.
, and
S.
Edwards
, “
Viscoelastic properties of physically crosslinked networks: Part 2. Dynamic mechanical moduli
,”
J. Non-Newton. Fluid Mech.
43
,
273
288
(
1992
).
43.
Leblanc
,
J. L
., “
Large amplitude oscillatory shear experiments to investigate the nonlinear viscoelastic properties of highly loaded carbon black rubber compounds without curatives
,”
J. Appl. Polym. Sci.
109
,
1271
1293
(
2008
).
44.
Sugimoto
,
M.
,
Y.
Suzuki
,
K.
Hyun
,
K. H.
Ahn
,
T.
Ushioda
,
A.
Nishioka
,
T.
Taniguchi
, and
K.
Koyama
, “
Melt rheology of long-chain-branched polypropylenes
,”
Rheol. Acta
46
,
33
44
(
2006
).
45.
Leblanc
,
J. L.
, and
C.
de la Chapelle
, “
Updating a torsional dynamic rheometer for Fourier transform rheometry on rubber materials
,”
Rubber Chem. Technol.
76
,
287
298
(
2003
).
46.
Curro
,
J. G.
,
D. S.
Pearson
, and
E.
Helfand
, “
Viscoelasticity of randomly crosslinked polymer networks. Relaxation of dangling chains
,”
Macromolecules
18
,
1157
1162
(
1985
).
47.
Kraus
,
G.
, and
J.
Dugone
, “
Adsorption of elastomers on carbon black
,”
Ind. Eng. Chem. Res.
47
,
1809
1816
(
1955
).
48.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Convective constraint release (CCR) revisited
,”
J. Rheol.
58
,
89
102
(
2014
).
49.
Des Cloizeaux
,
J
., “
Relaxation and viscosity anomaly of melts made of long entangled polymers: Time-dependent reptation
,”
Macromolecules
23
,
4678
4687
(
1990
).
50.
Van Ruymbeke
,
E.
,
R.
Keunings
,
V.
Stéphenne
,
A.
Hagenaars
, and
C.
Bailly
, “
Evaluation of reptation models for predicting the linear viscoelastic properties of entangled linear polymers
,”
Macromolecules
35
,
2689
2699
(
2002
).
51.
Liu
,
C.
,
P.
Liu
,
Q.
Chen
,
B.
Du
, and
Z.
Wang
, “
Entanglement relaxation of poly(1-butene) and its copolymer with ethylene detected in conventional shear rheometer and quartz resonator
,”
J. Rheol.
63
,
167
177
(
2019
).
52.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Convective orientational renewal in entangled polymers
,”
J. Non-Newton. Fluid Mech.
95
,
363
374
(
2000
).
53.
Furuichi
,
K.
,
C.
Nonomura
,
Y.
Masubuchi
, and
H.
Watanabe
, “
Chain contraction and nonlinear stress damping in primitive chain network simulations
,”
J. Chem. Phys.
133
,
174902
(
2010
).
54.
Saphiannikova
,
M.
,
V.
Toshchevikov
,
I.
Gazuz
,
F.
Petry
,
S.
Westermann
, and
G.
Heinrich
, “
Multiscale approach to dynamic-mechanical analysis of unfilled rubbers
,”
Macromolecules
47
,
4813
4823
(
2014
).
55.
Vega
,
D. A.
,
L. R.
Gómez
,
L. E.
Roth
,
J. A.
Ressia
,
M. A.
Villar
, and
E. M.
Vallés
, “
Arm retraction potential of branched polymers in the absence of dynamic dilution
,”
Phys. Rev. Lett.
95
,
166002
(
2005
).
56.
Davidson
,
J. D.
, and
N.
Goulbourne
, “
A nonaffine network model for elastomers undergoing finite deformations
,”
J. Mech. Phys. Solids
61
,
1784
1797
(
2013
).
57.
Agudelo
,
D. C.
,
L. E.
Roth
,
D. A.
Vega
,
E. M.
Vallés
, and
M. A.
Villar
, “
Dynamic response of transiently trapped entanglements in polymer networks
,”
Polymer
55
,
1061
1069
(
2014
).
58.
Sarvestani
,
A. S
., “
On the emergence of the Payne effect in polymer melts reinforced with nanoparticles
,”
Macromol. Theory Simul.
25
,
312
321
(
2016
).
59.
Marrucci
,
G.
, and
G.
Ianniruberto
, “
Flow-induced orientation and stretching of entangled polymers
,”
Philos. Trans. R. Soc. A
361
,
677
688
(
2003
).
60.
Masubuchi
,
Y
., “
Multichain slip-spring simulations for branch polymers
,”
Macromolecules
51
,
10184
10193
(
2018
).
61.
Roth
,
L. E.
,
D. C.
Agudelo
,
J. A.
Ressia
,
L. R.
Gómez
,
E. M.
Vallés
,
M. A.
Villar
, and
D. A.
Vega
, “
Viscoelastic response of linear defects trapped in polymer networks
,”
Eur. Polym. J.
64
,
1
9
(
2015
).
62.
Xu
,
H.
,
X.
Fan
,
Y.
Song
, and
Q.
Zheng
. “
Reinforcement and Payne effect of hydrophobic silica filled natural rubber nanocomposites
,”
Compos. Sci. Technol.
187
,
107943
(
2019
).
63.
Tanaka
,
Y
., “
Structural characterization of natural polyisoprenes: Solve the mystery of natural rubber based on structural study
,”
Rubber Chem. Technol.
74
,
355
375
(
2001
).
64.
Tarachiwin
,
L.
,
J.
Sakdapipanich
,
K.
Ute
,
T.
Kitayama
,
T.
Bamba
,
E.-i.
Fukusaki
,
A.
Kobayashi
, and
Y.
Tanaka
, “
Structural characterization of α-terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments
,”
Biomacromolecules
6
,
1851
1857
(
2005
).
65.
Tarachiwin
,
L.
,
J.
Sakdapipanich
,
K.
Ute
,
T.
Kitayama
, and
Y.
Tanaka
, “
Structural characterization of α-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments
,”
Biomacromolecules
6
,
1858
1863
(
2005
).
66.
Mongruel
,
A.
, and
M.
Cartault
, “
Nonlinear rheology of styrene-butadiene rubber filled with carbon-black or silica particles
,”
J. Rheol.
50
,
115
135
(
2006
).
67.
Majesté
,
J.-C.
, and
F.
Vincent
, “
A kinetic model for silica-filled rubber reinforcement
,”
J. Rheol.
59
,
405
427
(
2015
).
68.
Domurath
,
J.
,
M.
Saphiannikova
,
G.
Ausias
, and
G.
Heinrich
, “
Modelling of stress and strain amplification effects in filled polymer melts
,”
J. Non-Newton. Fluid Mech.
171
,
8
16
(
2012
).
69.
Huber
,
G.
, and
T. A.
Vilgis
, “
Universal properties of filled rubbers: Mechanisms for reinforcement on different length scales
,”
Kautsch. Gummi Kunstst.
52
,
102
107
(
1999
).
70.
Klüppel
,
M.
,
The role of disorder in filler reinforcement of elastomers on various length scales
, in
Filler-Reinforced Elastomers/Scanning Force Microscopy
(
Springer
,
Berlin
,
2003
).
71.
Potanin
,
A.
, and
W.
Russel
, “
Fractal model of consolidation of weakly aggregated colloidal dispersions
,”
Phys. Rev. E
53
,
3702
(
1996
).
72.
Kantor
,
Y.
, and
I.
Webman
, “
Elastic properties of random percolating systems
,”
Phys. Rev. Lett.
52
,
1891
(
1984
).
73.
Arbabi
,
S.
, and
M.
Sahimi
, “
Elastic properties of three-dimensional percolation networks with stretching and bond-bending forces
,”
Phys. Rev. B
38
,
7173
(
1988
).
74.
Loiseau
,
A.
, and
J.-F.
Tassin
, “
Model nanocomposites based on laponite and poly(ethylene oxide): Preparation and rheology
,”
Macromolecules
39
,
9185
9191
(
2006
).
75.
Balberg
,
I
., “
Tunneling and nonuniversal conductivity in composite materials
,”
Phys. Rev. Lett.
59
,
1305
(
1987
).
76.
Payne
,
A.
, and
R.
Whittaker
, “
Dynamic properties of materials
,”
Rheol. Acta
9
,
97
102
(
1970
).
77.
Wang
,
X.
, and
C. G.
Robertson
, “
Strain-induced nonlinearity of filled rubbers
,”
Phys. Rev. E
72
,
031406
(
2005
).
78.
Han
,
H.
,
Y.
Song
, and
Q.
Zheng
. “
Rheological and interfacial properties of colloidal electrolytes
,”
Chin. J. Polym. Sci.
37
,
1039
1044
(
2019
)
79.
Litvinov
,
V.
, and
P.
Steeman
, “
EPDM-carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR
,”
Macromolecules
32
,
8476
8490
(
1999
).
80.
Schwartz
,
G. A.
,
S.
Cerveny
,
A. J.
Marzocca
,
M.
Gerspacher
, and
L.
Nikiel
, “
Thermal aging of carbon black filled rubber compounds. I. Experimental evidence for bridging flocculation
,”
Polymer
44
,
7229
7240
(
2003
).
81.
See supplementary material at https://10.1122/1.5124034 for the experimental rheological responses of IR systems and characterization results for filler dispersity, swelling, molecular weight, and electrical resistivity.

Supplementary Material

You do not currently have access to this content.