We show how two-species models, already proposed for the rheology of networks of associative polymer solutions, can be derived from nonequilibrium thermodynamics using the generalized bracket formalism. The two species refer to bridges and (temporary) dangling chains, both of which are represented as dumbbells. Creation and destruction of bridges in our model are accommodated self-consistently by assuming a two-way reaction characterized by a forward and a reverse rate constant. Although the final set of evolution equations for the microstructure of the two species and the expression for the stress tensor are similar to those of earlier models based on network kinetic theory, nonequilibrium thermodynamics sets specific constraints on the form of the attachment/detachment rates appearing in these equations, which, in some cases, deviate significantly from previously reported ones. We also carry out a detailed analysis demonstrating the capability of the new model to describe various sets of rheological data for solutions of associative polymers.

1.
Chassenieux
,
C.
,
T.
Nicolai
, and
L.
Benyahia
, “
Rheology of associative polymer solutions
,”
Curr. Opin. Colloid Interface Sci.
16
,
18
26
(
2011
).
2.
Glass
,
J. E.
,
D. N.
Schulz
, and
C. F.
Zukoski
, “Polymers as Rheology Modifiers: An overview,” in Polymers as Rheology Modifiers, ACS Symposium Series, edited by D. N. Schulz, and J. E. Glass (American Chemical Society, Washington, DC, 1991), Chap. 1, pp. 2–17.
3.
Winnik
,
M. A.
, and
A.
Yekta
, “
Associative polymers in aqueous solution
,”
Curr. Opin. Colloid Interface Sci.
2
,
424
436
(
1997
).
4.
Wever
,
D. A. Z.
,
F.
Picchioni
, and
A. A.
Broekhuis
, “
Polymers for enhanced oil recovery: A paradigm for structure–property relationship in aqueous solution
,”
Prog. Polym. Sci.
36
,
1558
1628
(
2011
).
5.
Evani
,
S.
, Enhanced oil recovery process using a hydrophobic associative composition containing a hydrophilic/hydrophobic polymer, U.S. Patent US4814096A (21 March
1989
).
6.
Emmons
,
W. D.
, and
T. E.
Stevens
, Polyurethane thickeners in latex compositions, U.S. Patent US4155892A (22 May
1979
).
7.
Orgilés-Calpena
,
E.
,
F.
Arán-Aís
,
A. M.
Torró-Palau
,
C.
Orgilés-Barceló
, and
J. M.
Martín-Martínez
, “
Addition of different amounts of a urethane-based thickener to waterborne polyurethane adhesive
,”
Int. J. Adhes. Adhes.
29
,
309
318
(
2009
).
8.
Zheng
,
Y. J.
, and
X. J.
Loh
, “
Natural rheological modifiers for personal care
,”
Polym. Adv. Technol.
27
,
1664
1679
(
2016
).
9.
Tripathi
,
A.
,
K. C.
Tam
, and
G. H.
McKinley
, “
Rheology and dynamics of associative polymers in shear and extension: Theory and experiments
,”
Macromolecules
39
,
1981
1999
(
2006
).
10.
Annable
,
T.
,
R.
Buscall
, and
R.
Ettelaie
, “
Network formation and its consequences for the physical behaviour of associating polymers in solution
,”
Colloids Surf. A
112
,
97
116
(
1996
).
11.
Suzuki
,
S.
,
T.
Uneyama
, and
H.
Watanabe
, “
Concentration dependence of nonlinear rheological properties of hydrophobically modified ethoxylated urethane aqueous solutions
,”
Macromolecules
46
,
3497
3504
(
2013
).
12.
Boudara
,
V. A. H.
, and
D. J.
Read
, “
Periodic ‘stick-slip’ transition within a continuum model for entangled supramolecular polymers
,”
J. Rheol.
62
,
249
264
(
2018
).
13.
Annable
,
T.
,
R.
Buscall
,
R.
Ettelaie
, and
D.
Whittlestone
, “
The rheology of solutions of associating polymers: Comparison of experimental behavior with transient network theory
,”
J. Rheol.
37
,
695
726
(
1993
).
14.
Ng
,
W. K.
,
K. C.
Tam
, and
R. D.
Jenkins
, “
Lifetime and network relaxation time of a HEUR-C20 associative polymer system
,”
J. Rheol.
44
,
137
147
(
2000
).
15.
Berret
,
J.-F.
, and
Y.
Séréro
, “
Evidence of shear-induced fluid fracture in telechelic polymer networks
,”
Phys. Rev. Lett.
87
,
048303
(
2001
).
16.
Berret
,
J.-F.
,
Y.
Séréro
,
B.
Winkelman
,
D.
Calvet
,
A.
Collet
, and
M.
Viguier
, “
Nonlinear rheology of telechelic polymer networks
,”
J. Rheol.
45
,
477
492
(
2001
).
17.
Tam
,
K. C.
,
R. D.
Jenkins
,
M. A.
Winnik
, and
D. R.
Bassett
, “
A structural model of hydrophobically modified urethane–ethoxylate (HEUR) associative polymers in shear flows
,”
Macromolecules
31
,
4149
4159
(
1998
).
18.
Suzuki
,
S.
,
T.
Uneyama
,
T.
Inoue
, and
H.
Watanabe
, “
Nonlinear rheology of telechelic associative polymer networks: shear thickening and thinning behavior of hydrophobically modified ethoxylated urethane (HEUR) in aqueous solution
,”
Macromolecules
45
,
888
898
(
2012
).
19.
Ma
,
S. X.
, and
S. L.
Cooper
, “
Shear thickening in aqueous solutions of hydrocarbon end-capped poly(ethylene oxide)
,”
Macromolecules
34
,
3294
3301
(
2001
).
20.
Green
,
M. S.
, and
A. V.
Tobolsky
, “
A new approach to the theory of relaxing polymeric media
,”
J. Chem. Phys.
14
,
80
92
(
1946
).
21.
Yamamoto
,
M.
, “
The visco-elastic properties of network structure I. General formalism
,”
J. Phys. Soc. Jpn.
11
,
413
421
(
1956
).
22.
Tanaka
,
F.
, and
S. F.
Edwards
, “
Viscoelastic properties of physically crosslinked networks. Transient network theory
,”
Macromolecules
25
,
1516
1523
(
1992
).
23.
Tanaka
,
F.
, and
S. F.
Edwards
, “
Viscoelastic properties of physically crosslinked networks Part 1. Non-linear stationary viscoelasticity
,”
J. Non-Newton Fluid Mech.
43
,
247
271
(
1992
).
24.
Tanaka
,
F.
, and
S. F.
Edwards
, “
Viscoelastic properties of physically crosslinked networks Part 2. Dynamic mechanical moduli
,”
J. Non-Newton Fluid Mech.
43
,
273
288
(
1992
).
25.
Tanaka
,
F.
, and
S. F.
Edwards
, “
Viscoelastic properties of physically crosslinked networks Part 3. Time-dependent phenomena
,”
J. Non-Newton Fluid Mech.
43
,
289
309
(
1992
).
26.
Koga
,
T.
, and
F.
Tanaka
, “
Theoretical predictions on normal stresses under shear flow in transient networks of telechelic associating polymers
,”
Macromolecules
43
,
3052
3060
(
2010
).
27.
Koga
,
T.
,
F.
Tanaka
,
I.
Kaneda
, and
F. M.
Winnik
, “
Stress buildup under start-up shear flows in self-assembled transient networks of telechelic associating polymers
,”
Langmuir
25
,
8626
8638
(
2009
).
28.
Marrucci
,
G.
,
S.
Bhargava
, and
S. L.
Cooper
, “
Models of shear-thickening behavior in physically cross-linked networks
,”
Macromolecules
26
,
6483
6488
(
1993
).
29.
Wang
,
S. Q.
, “
Transient network theory for shear-thickening fluids and physically cross-linked systems
,”
Macromolecules
25
,
7003
7010
(
1992
).
30.
Vaccaro
,
A.,
and
G.
Marrucci
, “
A model for the nonlinear rheology of associating polymers
,”
J. Non-Newton Fluid Mech.
92
,
261
–273 (
2000
).
31.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
New interpretation of shear thickening in telechelic associating polymers
,”
Macromolecules
48
,
5439
5449
(
2015
).
32.
Cass
,
M. J.
,
D. M.
Heyes
,
R.-L.
Blanchard
, and
R. J.
English
, “
Simulations and experiments of self-associating telechelic polymer solutions
,”
J. Phys. Condens. Matter
20
,
335103
(
2008
).
33.
Park
,
G. W.
, and
G.
Ianniruberto
, “
A new stochastic simulation for the rheology of telechelic associating polymers
,”
J. Rheol.
61
,
1293
1305
(
2017
).
34.
van den Brule
,
B. H. A.
, and
P.
Hoogerbrugge
, “
Brownian dynamics simulation of reversible polymeric networks
,”
J. Non-Newton Fluid Mech.
60
,
303
–334 (
1995
).
35.
Hernández Cifre
,
J. G.
,
R.
Pamies
,
A.-L.
Kjøniksen
,
K. D.
Knudsen
,
B.
Nyström
, and
J.
García de la Torre
, “
Brownian dynamics simulation of reversible polymer networks using a non-interacting bead-and-spring chain model
,”
J. Non-Newton Fluid Mech.
146
,
3
–10 (
2007
).
36.
Hernández Cifre
,
J.
,
T. M. A. O.
Barenbrug
,
J.
Schieber
, and
B. H. A.
van den Brule
, “
Brownian dynamics simulation of reversible polymer networks under shear using a non-interacting dumbbell model
,”
J. Non-Newton Fluid Mech.
113
,
73
–96 (
2003
).
37.
Hatzikiriakos
,
S. G.
, and
D.
Vlassopoulos
, “
Brownian dynamics simulations of shear-thickening in dilute polymer solutions
,”
Rheol. Acta
35
,
274
287
(
1996
).
38.
Manassero
,
C.
, and
C.
Castellano
, “
Telechelic melt polymer's structure variation depending on shear deformation
,”
J. Macromol. Sci. Part B
52
,
1465
1477
(
2013
).
39.
Khalatur
,
P. G.
,
A. R.
Khokhlov
, and
D. A.
Mologin
, “
Simulation of self-associating polymer systems. I. Shear-induced structural changes
,”
J. Chem. Phys.
109
,
9602
9613
(
1998
).
40.
Castillo-Tejas
,
J.
,
O.
Castrejón-González
,
S.
Carro
,
V.
González-Coronel
,
J. F. J.
Alvarado
, and
O.
Manero
, “
Associative polymers. Part III: Shear rheology from molecular dynamics
,”
Colloids Surf. A
491
,
37
49
(
2016
).
41.
Amin
,
D.
, and
Z.
Wang
, “
Nonlinear rheology and dynamics of supramolecular polymer networks formed by associative telechelic chains under shear and extensional flows
,”
J. Rheol.
64
,
581
600
(
2020
).
42.
Beris
,
A. N.
, and
B. J.
Edwards
,
Thermodynamics of Flowing Systems with Internal Microstructure
(
Oxford University
,
New York
,
1994
).
43.
Öttinger
,
H. C.
,
Beyond Equilibrium Thermodynamics
(
Wiley-Interscience
,
New York
,
2004
).
44.
Grmela
,
M.
, and
H. C.
Öttinger
, “
Dynamics and thermodynamics of complex fluids. I. Development of a general formalism
,”
Phys. Rev. E
56
,
6620
6632
(
1997
).
45.
Öttinger
,
H. C.
, and
M.
Grmela
, “
Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism
,”
Phys. Rev. E
56
,
6633
–6655 (
1997
).
46.
Tsimouri
,
I. C.
,
P. S.
Stephanou
, and
V. G.
Mavrantzas
, “
A constitutive rheological model for agglomerating blood derived from nonequilibrium thermodynamics
,”
Phys. Fluids
30
,
030710
(
2018
).
47.
Stephanou
,
P. S.
,
I. C.
Tsimouri
, and
V. G.
Mavrantzas
, “
Flow-induced orientation and stretching of entangled polymers in the framework of nonequilibrium thermodynamics
,”
Macromolecules
49
,
3161
3173
(
2016
).
48.
Stephanou
,
P. S.
,
V. G.
Mavrantzas
, and
G. C.
Georgiou
, “
Continuum model for the phase behavior, microstructure, and rheology of unentangled polymer nanocomposite melts
,”
Macromolecules
47
,
4493
4513
(
2014
).
49.
Stephanou
,
P. S.
, and
G. G.
Georgiou
, “
A nonequilibrium thermodynamics perspective of thixotropy
,”
J. Chem. Phys.
149
,
244902
(
2018
).
50.
Stephanou
,
P. S.
,
C.
Baig
, and
V. G.
Mavrantzas
, “
A generalized differential constitutive equation for polymer melts based on principles of nonequilibrium thermodynamics
,”
J. Rheol.
53
,
309
337
(
2009
).
51.
Stephanou
,
P. S.
, “
The rheology of drilling fluids from a non-equilibrium thermodynamics perspective
,”
J. Pet. Sci. Eng.
165
,
1010
1020
(
2018
).
52.
Stephanou
,
P. S.
, “
How the flow affects the phase behaviour and microstructure of polymer nanocomposites
,”
J. Chem. Phys.
142
,
064901
(
2015
).
53.
Beris
,
A. N.
, “
Simple non-equilibrium thermodynamics applications to polymer rheology
,”
Rheol. Rev.
2003
,
37
–75.
54.
Mavrantzas
,
V. G.
, and
A. N.
Beris
, “
A hierarchical model for surface effects on chain conformation and rheology of polymer solutions. I. General formulation
,”
J. Chem. Phys.
110
,
616
627
(
1999
).
55.
Mavrantzas
,
V. G.
, and
A. N.
Beris
, “
A hierarchical model for surface effects on chain conformation and rheology of polymer solutions. II. Application to a neutral surface
,”
J. Chem. Phys.
110
,
628
638
(
1999
).
56.
Grmela
,
M.
,
F.
Chinesta
, and
A.
Ammar
, “
Mesoscopic tube model of fluids composed of worm-like micelles
,”
Rheol. Acta
49
,
495
506
(
2010
).
57.
Germann
,
N.
,
L. P.
Cook
, and
A. N.
Beris
, “
Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions
,”
J. Non-Newton Fluid Mech.
196
,
51
57
(
2013
).
58.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
, 1st ed. (
Oxford University
,
Oxford
,
2003
).
59.
Alexandridis
,
P.
, and
T.
Alan Hatton
, “
Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling
,”
Colloids Surf. A
96
,
1
46
(
1995
).
60.
Boudara
,
V. A. H.
, and
D. J.
Read
, “
Stochastic and preaveraged nonlinear rheology models for entangled telechelic star polymers
,”
J. Rheol.
61
,
339
362
(
2017
).
61.
See supplementary material at http://doi.org/10.1122/8.0000038 for the predictions of the model when the relaxation time is constant.

Supplementary Material

You do not currently have access to this content.