Yield stress fluids display a rich rheological phenomenology. Beyond the defining existence of a yield stress in the steady state flow curve, this includes, in many materials, rather flat viscoelastic spectra over many decades of frequency in small amplitude oscillatory shear; slow stress relaxation following the sudden imposition of a small shear strain; stress overshoot in shear startup; logarithmic or sublinear power-law creep following the imposition of a shear stress below the yield stress; creep followed by yielding after the imposition of a shear stress above the yield stress; richly featured Lissajous–Bowditch curves in large-amplitude oscillatory shear; a Bauschinger effect, in which a material’s effective yield strain is lowered under straining in one direction, following a preceding strain in the opposite direction; hysteresis in up-down shear rate sweeps; and (in some materials) thixotropy and/or rheological aging. A key challenge is to develop a constitutive model that contains enough underlying mesoscopic physics to have meaningful predictive power for the full gamut of rheological behavior just described, with only a small number of model parameters, yet is simple enough for use in computational fluid dynamics to predict flows in complicated geometries, or complicated flows that arise due to spontaneous symmetry breaking instabilities even in simple geometries. Here, we introduce such a model, motivated by the widely used soft glassy rheology model, and show that it captures all the above rheological features.

1.
Bonn
,
D.
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
035005
(
2017
).
2.
Coussot
,
P.
, “
Slow flows of yield stress fluids: Yielding liquids or flowing solids?
,”
Rheol. Acta
57
,
1
14
(
2018
).
3.
Coussot
,
P.
, “
Yield stress fluid flows: A review of experimental data
,”
J. Non-Newton. Fluid Mech.
211
,
31
49
(
2014
).
4.
Bonn
,
D.
, and
M. M.
Denn
, “
Yield stress fluids slowly yield to analysis
,”
Science
324
,
1401
1402
(
2009
).
5.
Coussot
,
P.
, “
Rheophysics of pastes: A review of microscopic modelling approaches
,”
Soft Matter
3
,
528
540
(
2007
).
6.
Denn
,
M. M.
, and
D.
Bonn
, “
Issues in the flow of yield-stress liquids
,”
Rheol. Acta
50
,
307
315
(
2011
).
7.
Balmforth
,
N. J.
,
I. A.
Frigaard
, and
G.
Ovarlez
, “
Yielding to stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2014
).
8.
Moller
,
P. C.
,
J.
Mewis
, and
D.
Bonn
, “
Yield stress and thixotropy: On the difficulty of measuring yield stresses in practice
,”
Soft Matter
2
,
274
283
(
2006
).
9.
Herschel
,
W.
, and
R.
Bulkley
, “
Consistency measurements of rubber-benzol solutions
,”
Kolloid-Zeitschrift
39
,
291
300
(
1926
).
10.
Bingham
,
E. C.
,
Fluidity and Plasticity
(
McGraw-Hill
,
New York
,
1922
), Vol. 2.
11.
Larson
,
R. G.
, and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
12.
Ikeda
,
A.
,
L.
Berthier
, and
P.
Sollich
, “
Unified study of glass and jamming rheology in soft particle systems
,”
Phys. Rev. Lett.
109
,
018301
(
2012
).
13.
Ikeda
,
A.
,
L.
Berthier
, and
P.
Sollich
, “
Disentangling glass and jamming physics in the rheology of soft materials
,”
Soft Matter
9
,
7669
7683
(
2013
).
14.
Sollich
,
P.
,
F.
Lequeux
,
P.
Hebraud
, and
M.
Cates
, “
Rheology of soft glassy materials
,”
Phys. Rev. Lett.
78
,
2020
2023
(
1997
).
15.
Fielding
,
S.
,
P.
Sollich
, and
M.
Cates
, “
Aging and rheology in soft materials
,”
J. Rheol.
44
,
323
369
(
2000
).
16.
Sollich
,
P.
, “
Rheological constitutive equation for a model of soft glassy materials
,”
Phys. Rev. E
58
,
738
759
(
1998
).
17.
Mackley
,
M.
,
R.
Marshall
,
J.
Smeulders
, and
F.
Zhao
, “
The rheological characterization of polymeric and colloidal fluids
,”
Chem. Eng. Sci.
49
,
2551
2565
(
1994
).
18.
Ketz
,
R.
,
R. K.
Prud’homme
, and
W.
Graessley
, “
Rheology of concentrated microgel solutions
,”
Rheol. Acta
27
,
531
539
(
1988
).
19.
Khan
,
S. A.
,
C. A.
Schnepper
, and
R. C.
Armstrong
, “
Foam rheology: III. Measurement of shear flow properties
,”
J. Rheol.
32
,
69
92
(
1988
).
20.
Mason
,
T.
,
J.
Bibette
, and
D.
Weitz
, “
Elasticity of compressed emulsions
,”
Phys. Rev. Lett.
75
,
2051
2054
(
1995
).
21.
Panizza
,
P.
,
D.
Roux
,
V.
Vuillaume
,
C.-Y.
Lu
, and
M.
Cates
, “
Viscoelasticity of the onion phase
,”
Langmuir
12
,
248
252
(
1996
).
22.
Hoffmann
,
H.
, and
A.
Rauscher
, “
Aggregating systems with a yield stress value
,”
Colloid Polym. Sci.
271
,
390
395
(
1993
).
23.
Mason
,
T.
, and
D.
Weitz
, “
Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition
,”
Phys. Rev. Lett.
75
,
2770
2773
(
1995
).
24.
Ramos
,
L.
, and
L.
Cipelletti
, “
Ultraslow dynamics and stress relaxation in the aging of a soft glassy system
,”
Phys. Rev. Lett.
87
,
245503
(
2001
).
25.
Batista
,
A. P.
,
A.
Raymundo
,
I.
Sousa
,
J.
Empis
, and
J. M.
Franco
, “
Colored food emulsions–implications of pigment addition on the rheological behavior and microstructure
,”
Food Biophys.
1
,
216
227
(
2006
).
26.
Papenhuijzen
,
J.
, “
The role of particle interactions in the rheology of dispersed systems
,”
Rheol. Acta
11
,
73
88
(
1972
).
27.
Divoux
,
T.
,
D.
Tamarii
,
C.
Barentin
, and
S.
Manneville
, “
Transient shear banding in a simple yield stress fluid
,”
Phys. Rev. Lett.
104
,
208301
(
2010
).
28.
Divoux
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
Stress overshoot in a simple yield stress fluid: An extensive study combining rheology and velocimetry
,”
Soft Matter
7
,
9335
9349
(
2011
).
29.
Martin
,
J. D.
, and
Y. T.
Hu
, “
Transient and steady-state shear banding in aging soft glassy materials
,”
Soft Matter
8
,
6940
6949
(
2012
).
30.
Gibaud
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
Influence of boundary conditions on yielding in a soft glassy material
,”
Phys. Rev. Lett.
101
,
258302
(
2008
).
31.
Kurokawa
,
A.
,
V.
Vidal
,
K.
Kurita
,
T.
Divoux
, and
S.
Manneville
, “
Avalanche-like fluidization of a non-Brownian particle gel
,”
Soft Matter
11
,
9026
9037
(
2015
).
32.
Koumakis
,
N.
, and
G.
Petekidis
, “
Two step yielding in attractive colloids: Transition from gels to attractive glasses
,”
Soft Matter
7
,
2456
2470
(
2011
).
33.
Liddel
,
P. V.
, and
D. V.
Boger
, “
Yield stress measurements with the vane
,”
J. Non-Newton. Fluid Mech.
63
(
2–3
),
235
261
(
1996
).
34.
Dimitriou
,
C. J.
, and
G. H.
McKinley
, “
A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid
,”
Soft Matter
10
,
6619
6644
(
2014
).
35.
Divoux
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids
,”
Soft Matter
7
,
8409
8418
(
2011
).
36.
Magnin
,
A.
, and
J. M.
Piau
, “
Cone-and-plate rheometry of yield stress fluids—Study of an aqueous gel
,”
J. Non-Newton. Fluid Mech.
36
,
85
108
(
1990
).
37.
Gibaud
,
T.
,
D.
Frelat
, and
S.
Manneville
, “
Heterogeneous yielding dynamics in a colloidal gel
,”
Soft Matter
6
,
3482
3488
(
2010
).
38.
Grenard
,
V.
,
T.
Divoux
,
N.
Taberlet
, and
S.
Manneville
, “
Timescales in creep and yielding of attractive gels
,”
Soft Matter
10
,
1555
1571
(
2014
).
39.
Sprakel
,
J.
,
S. B.
Lindström
,
T. E.
Kodger
, and
D. A.
Weitz
, “
Stress enhancement in the delayed yielding of colloidal gels
,”
Phys. Rev. Lett.
106
,
248303
(
2011
).
40.
Bauer
,
T.
,
J.
Oberdisse
, and
L.
Ramos
, “
Collective rearrangement at the onset of flow of a polycrystalline hexagonal columnar phase
,”
Phys. Rev. Lett.
97
,
258303
(
2006
).
41.
Sentjabrskaja
,
T.
,
P.
Chaudhuri
,
M.
Hermes
,
W. C. K.
Poon
,
J.
Horbach
,
S. U.
Egelhaaf
, and
M.
Laurati
, “
Creep and flow of glasses: Strain response linked to the spatial distribution of dynamical heterogeneities
,”
Sci. Rep.
5
,
11884
(
2015
).
42.
Siebenbürger
,
M.
,
M.
Ballauff
, and
T.
Voigtmann
, “
Creep in colloidal glasses
,”
Phys. Rev. Lett.
108
,
255701
(
2012
).
43.
Yoshimura
,
A. S.
, and
R. K.
Prud’homme
, “
Response of an elastic Bingham fluid to oscillatory shear
,”
Rheol. Acta
26
,
428
436
(
1987
).
44.
Knaebel
,
A.
,
M.
Bellour
,
J.-P.
Munch
,
V.
Viasnoff
,
F.
Lequeux
, and
J. L.
Harden
, “
Aging behavior of laponite clay particle suspensions
,”
Europhys. Lett.
52
,
73
79
(
2000
).
45.
Viasnoff
,
V.
,
S.
Jurine
, and
F.
Lequeux
, “
How are colloidal suspensions that age rejuvenated by strain application?
,”
Faraday Discuss.
123
,
253
266
(
2003
).
46.
Rouyer
,
F.
,
S.
Cohen-Addad
,
R.
Höhler
,
P.
Sollich
, and
S. M.
Fielding
, “
The large amplitude oscillatory strain response of aqueous foam: Strain localization and full stress Fourier spectrum
,”
Eur. Phys. J. E
27
,
309
321
(
2008
).
47.
Ewoldt
,
R. H.
,
P.
Winter
,
J.
Maxey
, and
G. H.
McKinley
, “
Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
,”
Rheol. Acta
49
,
191
212
(
2010
).
48.
Renou
,
F.
,
J.
Stellbrink
, and
G.
Petekidis
, “
Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS)
,”
J. Rheol.
54
,
1219
1242
(
2010
).
49.
van der Vaart
,
K.
,
Y.
Rahmani
,
R.
Zargar
,
Z.
Hu
,
D.
Bonn
, and
P.
Schall
, “
Rheology of concentrated soft and hard-sphere suspensions
,”
J. Rheol.
57
,
1195
1209
(
2013
).
50.
Koumakis
,
N.
,
J. F.
Brady
, and
G.
Petekidis
, “
Complex oscillatory yielding of model hard-sphere glasses
,”
Phys. Rev. Lett.
110
,
178301
(
2013
).
51.
Poulos
,
A. S.
,
J.
Stellbrink
, and
G.
Petekidis
, “
Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear
,”
Rheol. Acta
52
(
8–9
),
785
800
(
2013
).
52.
Poulos
,
A. S.
,
F.
Renou
,
A. R.
Jacob
,
N.
Koumakis
, and
G.
Petekidis
, “
Large amplitude oscillatory shear (LAOS) in model colloidal suspensions and glasses: Frequency dependence
,”
Rheol. Acta
54
,
715
724
(
2015
).
53.
Cohen
,
I.
,
B.
Davidovitch
,
A. B.
Schofield
,
M. P.
Brenner
, and
D. A.
Weitz
, “
Slip, yield, and bands in colloidal crystals under oscillatory shear
,”
Phys. Rev. Lett.
97
,
215502
(
2006
).
54.
Perge
,
C.
,
N.
Taberlet
,
T.
Gibaud
, and
S.
Manneville
, “
Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel
,”
J. Rheol.
58
,
1331
1357
(
2014
).
55.
Guo
,
Y.
,
W.
Yu
,
Y.
Xu
, and
C.
Zhou
, “
Correlations between local flow mechanism and macroscopic rheology in concentrated suspensions under oscillatory shear
,”
Soft Matter
7
,
2433
2443
(
2011
).
56.
Dimitriou
,
C. J.
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)
,”
J. Rheol.
57
,
27
70
(
2013
).
57.
Gibaud
,
T.
,
C.
Perge
,
S. B.
Lindstrom
,
N.
Taberlet
, and
S.
Manneville
, “
Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress
,”
Soft Matter
12
,
1701
1712
(
2016
).
58.
Park
,
J. D.
, and
S. A.
Rogers
, “
The transient behavior of soft glassy materials far from equilibrium
,”
J. Rheol.
62
,
869
888
(
2018
).
59.
Radhakrishnan
,
R.
, and
S. M.
Fielding
, “
Shear banding in large amplitude oscillatory shear (LAOStrain and LAOStress) of soft glassy materials
,”
J. Rheol.
62
,
559
576
(
2018
).
60.
Radhakrishnan
,
R.
, and
S. M.
Fielding
, “
Shear banding of soft glassy materials in large amplitude oscillatory shear
,”
Phys. Rev. Lett.
117
,
188001
(
2016
).
61.
Bannantine
,
J.
,
J.
Comer
, and
J.
Handrock
, Fundamentals of Metal Fatigue Analysis (Prentice Hall, Englewood Cliffs, NJ, 1990), p. 286.
62.
Karmakar
,
S.
,
E.
Lerner
, and
I.
Procaccia
, “
Plasticity-induced anisotropy in amorphous solids: The Bauschinger effect
,”
Phys. Rev. E
82
(
2 Pt 2
),
026104
(
2010
).
63.
Radhakrishnan
,
R.
,
T.
Divoux
,
S.
Manneville
, and
S. M.
Fielding
, “
Understanding rheological hysteresis in soft glassy materials
,”
Soft Matter
13
,
1834
1852
(
2017
).
64.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
,
018304
(
2013
).
65.
Colombo
,
J.
, and
E.
Del Gado
, “
Stress localization, stiffening, and yielding in a model colloidal gel
,”
J. Rheol.
58
,
1089
1116
(
2014
).
66.
Shrivastav
,
G. P.
,
P.
Chaudhuri
, and
J.
Horbach
, “
Yielding of glass under shear: A directed percolation transition precedes shear-band formation
,”
Phys. Rev. E
94
,
042605
(
2016
).
67.
Shi
,
Y.
,
M. B.
Katz
,
H.
Li
, and
M. L.
Falk
, “
Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids
,”
Phys. Rev. Lett.
98
,
185505
(
2007
).
68.
Varnik
,
F.
,
L.
Bocquet
, and
J. L.
Barrat
, “
A study of the static yield stress in a binary Lennard-Jones glass
,”
J. Chem. Phys.
120
,
2788
2801
(
2004
).
69.
Kabla
,
A.
,
J.
Scheibert
, and
G.
Debregeas
, “
Quasi-static rheology of foams. Part 2. Continuous shear flow
,”
J. Fluid Mech.
587
,
45
72
(
2007
).
70.
Barry
,
J. D.
,
D.
Weaire
, and
S.
Hutzler
, “
Shear localisation with 2D viscous froth and its relation to the continuum model
,”
Rheol. Acta
49
(
6, SI
),
687
698
(
2010
).
71.
Moorcroft
,
R. L.
,
M. E.
Cates
, and
S. M.
Fielding
, “
Age-dependent transient shear banding in soft glasses
,”
Phys. Rev. Lett.
106
,
055502
(
2011
).
72.
Fielding
,
S. M.
, “
Shear banding in soft glassy materials
,”
Rep. Prog. Phys.
77
,
102601
(
2014
).
73.
Lehtinen
,
A.
,
A.
Puisto
,
X.
Illa
,
M.
Mohtaschemi
, and
M. J.
Alava
, “
Transient shear banding in viscoelastic Maxwell fluids
,”
Soft Matter
9
,
8041
8049
(
2013
).
74.
Manning
,
M. L.
,
J. S.
Langer
, and
J. M.
Carlson
, “
Strain localization in a shear transformation zone model for amorphous solids
,”
Phys. Rev. E
76
,
056106
(
2007
).
75.
Manning
,
M. L.
,
E. G.
Daub
,
J. S.
Langer
, and
J. M.
Carlson
, “
Rate-dependent shear bands in a shear-transformation-zone model of amorphous solids
,”
Phys. Rev. E
79
,
016110
(
2009
).
76.
Jagla
,
E. A.
, “
Shear band dynamics from a mesoscopic modeling of plasticity
,”
J. Stat. Mech. Theory E
2010
,
P12025
(
2010
).
77.
Chaudhuri
,
P.
, and
J.
Horbach
, “
Onset of flow in a confined colloidal glass under an imposed shear stress
,”
Phys. Rev. E
88
,
040301
(
2013
).
78.
Moorcroft
,
R. L.
, and
S. M.
Fielding
, “
Criteria for shear banding in time-dependent flows of complex fluids
,”
Phys. Rev. Lett.
110
,
086001
(
2013
).
79.
Coussot
,
P.
,
J. S.
Raynaud
,
F.
Bertrand
,
P.
Moucheront
,
J. P.
Guilbaud
,
H. T.
Huynh
,
S.
Jarny
, and
D.
Lesueur
, “
Coexistence of liquid and solid phases in flowing soft-glassy materials
,”
Phys. Rev. Lett.
88
,
218301
(
2002
).
80.
Ragouilliaux
,
A.
,
B.
Herzhaft
,
F.
Bertrand
, and
P.
Coussot
, “
Flow instability and shear localization in a drilling mud
,”
Rheol. Acta
46
,
261
271
(
2006
).
81.
Brader
,
J. M.
,
M. E.
Cates
, and
M.
Fuchs
, “
First-principles constitutive equation for suspension rheology
,”
Phys. Rev. Lett.
101
,
138301
(
2008
).
82.
Amann
,
C. P.
,
M.
Siebenbuerger
,
M.
Krueger
,
F.
Weysser
,
M.
Ballauff
, and
M.
Fuchs
, “
Overshoots in stress-strain curves: Colloid experiments and schematic mode coupling theory
,”
J. Rheol.
57
,
149
175
(
2013
).
83.
Papenkort
,
S.
, and
T.
Voigtmann
, “
Multi-scale lattice Boltzmann and mode-coupling theory calculations of the flow of a glass-forming liquid
,”
J. Chem. Phys.
143
,
204502
(
2015
).
84.
Nicolas
,
A.
,
E. E.
Ferrero
,
K.
Martens
, and
J.-L.
Barrat
, “
Deformation and flow of amorphous solids: Insights from elastoplastic models
,”
Rev. Mod. Phys.
90
,
045006
(
2018
).
85.
Picard
,
G.
,
A.
Ajdari
,
F.
Lequeux
, and
L.
Bocquet
, “
Elastic consequences of a single plastic event: A step towards the microscopic modeling of the flow of yield stress fluids
,”
Eur. Phys. J. E
15
,
371
381
(
2004
).
86.
Hébraud
,
P.
, and
F.
Lequeux
, “
Mode-coupling theory for the pasty rheology of soft glassy materials
,”
Phys. Rev. Lett.
81
,
2934
2937
(
1998
).
87.
Lin
,
J.
, and
M.
Wyart
, “
Mean-field description of plastic flow in amorphous solids
,”
Phys. Rev. X
6
,
011005
(
2016
).
88.
Fielding
,
S. M.
,
M. E.
Cates
, and
P.
Sollich
, “
Shear banding, aging and noise dynamics in soft glassy materials
,”
Soft Matter
5
,
2378
2382
(
2009
).
89.
Hoyle
,
D. M.
, and
S. M.
Fielding
, “
Age-dependent modes of extensional necking instability in soft glassy materials
,”
Phys. Rev. Lett.
114
,
158301
(
2015
).
90.
Papanastasiou
,
T. C.
, “
Flows of materials with yield
,”
J. Rheol.
31
,
385
404
(
1987
).
91.
Syrakos
,
A.
,
G. C.
Georgiou
, and
A. N.
Alexandrou
, “
Performance of the finite volume method in solving regularised Bingham flows: Inertia effects in the lid-driven cavity flow
,”
J. Non-Newton. Fluid Mech.
208
,
88
107
(
2014
).
92.
Liu
,
B.
,
S.
Muller
, and
M.
Denn
, “
Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere
,”
J. Non-Newton. Fluid Mech.
102
,
179
191
(
2002
).
93.
Beris
,
A. N.
,
J. A.
Tsamopoulos
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Creeping motion of a sphere through a Bingham plastic
,”
J. Fluid Mech.
158
,
219
244
(
1985
).
94.
Smyrnaios
,
D.
, and
J.
Tsamopoulos
, “
Squeeze flow of Bingham plastics
,”
J. Non-Newton. Fluid Mech.
100
(
1–3
),
165
190
(
2001
).
95.
Blackery
,
J.
, and
E.
Mitsoulis
, “
Creeping motion of a sphere in tubes filled with a Bingham plastic material
,”
J. Non-Newton. Fluid Mech.
70
(
1–2
),
59
77
(
1997
).
96.
Mitsoulis
,
E.
, and
J.
Tsamopoulos
, “
Numerical simulations of complex yield-stress fluid flows
,”
Rheol. Acta
56
,
231
258
(
2017
).
97.
Keshavarz
,
B.
,
T.
Divoux
,
S.
Manneville
, and
G. H.
McKinley
, “
Nonlinear viscoelasticity and generalized failure criterion for polymer gels
,”
ACS Macro Lett.
6
,
663
667
(
2017
).
98.
Jaishankar
,
A.
, and
G. H.
McKinley
, “
A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids
,”
J. Rheol.
58
,
1751
1788
(
2014
).
99.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
A multimode structural kinetics constitutive equation for the transient rheology of thixotropic elasto-viscoplastic fluids
,”
J. Rheol.
62
,
321
342
(
2018
).
100.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
Quantitative nonlinear thixotropic model with stretched exponential response in transient shear flows
,”
J. Rheol.
60
,
1301
1315
(
2016
).
101.
Armstrong
,
M. J.
,
A. N.
Beris
,
S. A.
Rogers
, and
N. J.
Wagner
, “
Dynamic shear rheology and structure kinetics modeling of a thixotropic carbon black suspension
,”
Rheol. Acta
56
,
811
824
(
2017
).
102.
Saramito
,
P.
, “
A new constitutive equation for elastoviscoplastic fluid flows
,”
J. Non-Newton. Fluid Mech.
145
,
1
14
(
2007
).
103.
de Souza Mendes
,
P. R.
, “
Thixotropic elasto-viscoplastic model for structured fluids
,”
Soft Matter
7
,
2471
2483
(
2011
).
104.
Saramito
,
P.
, “
A new elastoviscoplastic model based on the Herschel-Bulkley viscoplastic model
,”
J. Non-Newton. Fluid Mech.
158
(
1–3
),
154
161
(
2009
).
105.
Patinet
,
S.
,
D.
Vandembroucq
, and
M. L.
Falk
, “
Connecting local yield stresses with plastic activity in amorphous solids
,”
Phys. Rev. Lett.
117
,
045501
(
2016
).
106.
Barbot
,
A.
,
M.
Lerbinger
,
A.
Hernandez-Garcia
,
R.
Garcia-Garcia
,
M. L.
Falk
,
D.
Vandembroucq
, and
S.
Patinet
, “
Local yield stress statistics in model amorphous solids
,”
Phys. Rev. E
97
,
033001
(
2018
).
107.
Ruscher
,
C.
, and
J.
Rottler
, arXiv:1908.01081v3.
108.
Sollich
,
P.
, CECAM Workshop (ACAM, Dublin, Ireland, 2011).
109.
Bouchaud
,
J.-P.
, and
D. S.
Dean
, “
Aging on Parisi’s tree
,”
J. Phys. I
5
,
265
286
(
1995
).
110.
Cates
,
M.
, and
P.
Sollich
, “
Tensorial constitutive models for disordered foams, dense emulsions, and other soft nonergodic materials
,”
J. Rheol.
48
,
193
207
(
2004
).
111.
Purnomo
,
E. H.
,
D.
van den Ende
,
S. A.
Vanapalli
, and
F.
Mugele
, “
Glass transition and aging in dense suspensions of thermosensitive microgel particles
,”
Phys. Rev. Lett.
101
,
238301
(
2008
).
112.
Rogers
,
S. A.
,
B. M.
Erwin
,
D.
Vlassopoulos
, and
M.
Cloitre
, “
A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid
,”
J. Rheol.
55
,
435
458
(
2011
).
113.
Bauschinger
,
J.
, “
Über die veränderung der elastizitätsgrenze und der festigkeit des eisens und stahls durch strecken und quetschen, durch erwärmen und abkühlen und durch oftmals wiederholte beanspruchung
,”
Mitteilungen des mechanisch-technischen Laboratoriums der Königlich Technischen Hochschule München
13
,
1
115
(
1886
).
114.
Liu
,
C.
,
K.
Martens
, and
J.-L.
Barrat
, “
Mean-field scenario for the athermal creep dynamics of yield-stress fluids
,”
Phys. Rev. Lett.
120
,
028004
(
2018
).
You do not currently have access to this content.