We present a new, free, and open source reptate (rheology of entangled polymers: toolkit for analysis of theory and experiment) software package for viewing, exchanging, and analyzing rheological and associated data. The main idea of reptate is to propose a powerful and user-friendly platform, which can be installed on the same computer as, e.g., the rheometer and which makes comparing experiments with classical, or latest, theories easy—without the need for a theoretician. The new reptate software offers full compatibility with different operating systems (Windows, Mac, and Linux). We demonstrate the use of reptate by reproducing predictions of recently published articles, from entangled, monodisperse, and polydisperse linear chains to branch-on-branch polymer systems in linear and nonlinear rheology regimes.

1.
Winter
,
H. H.
, and
M.
Mours
, “
The cyber infrastructure initiative for rheology
,”
Rheol. Acta
45
,
331
338
(
2006
).
2.
Milner
,
S. T.
, and
T. C.
McLeish
, “
Parameter-free theory for stress relaxation in star polymer melts
,”
Macromolecules
30
,
2159
2166
(
1997
).
3.
Milner
,
S. T.
, and
T. C. B.
McLeish
, “
Reptation and contour-length fluctuations in melts of linear polymers
,”
Phys. Rev. Lett.
81
,
725
728
(
1998
).
4.
Larson
,
R. G.
, “
Combinatorial rheology of branched polymer melts
,”
Macromolecules
34
,
4556
4571
(
2001
).
5.
Park
,
S. J.
,
S.
Shanbhag
, and
R. G.
Larson
, “
A hierarchical algorithm for predicting the linear viscoelastic properties of polymer melts with long-chain branching
,”
Rheol. Acta
44
,
319
330
(
2005
).
6.
Wang
,
Z.
,
X.
Chen
, and
R. G.
Larson
, “
Comparing tube models for predicting the linear rheology of branched polymer melts
,”
J. Rheol.
54
,
223
260
(
2010
).
7.
Rolón-Garrido
,
V. H.
, and
M. H.
Wagner
, “
The MSF model: Relation of nonlinear parameters to molecular structure of long-chain branched polymer melts
,”
Rheol. Acta
46
,
583
593
(
2007
).
8.
Masubuchi
,
Y.
,
J.-I.
Takimoto
,
K.
Koyama
,
G.
Ianniruberto
,
G.
Marrucci
, and
F.
Greco
, “
Brownian simulations of a network of reptating primitive chains
,”
J. Chem. Phys.
115
,
4387
4394
(
2001
).
9.
Doi
,
M.
, “
OCTA (open computational tool for advanced material technology)
,”
Macromol. Symp.
195
,
101
108
(
2003
).
10.
Das
,
C.
,
N. J.
Inkson
,
D. J.
Read
,
M. A.
Kelmanson
, and
T. C. B.
McLeish
, “
Computational linear rheology of general branch-on-branch polymers
,”
J. Rheol.
50
,
207
234
(
2006
).
11.
Das
,
C.
,
D. J.
Read
,
M. A.
Kelmanson
, and
T. C. B.
McLeish
, “
Dynamic scaling in entangled mean-field gelation polymers
,”
Phys. Rev. E
74
,
011404
(
2006
).
12.
Chambon
,
P.
,
C. M.
Fernyhough
,
K.
Im
,
T.
Chang
,
C.
Das
,
J.
Embery
,
T. C. B.
McLeish
, and
D. J.
Read
, “
Synthesis, temperature gradient interaction chromatography, and rheology of entangled styrene comb polymers
,”
Macromolecules
41
,
5869
5875
(
2008
).
13.
Boudara
,
V. A. H.
,
J. D.
Peterson
,
L. G.
Leal
, and
D. J.
Read
, “
Nonlinear rheology of polydisperse blends of entangled linear polymers: Rolie-Double-Poly models
,”
J. Rheol.
63
,
71
91
(
2019
).
14.
Likhtman
,
A. E.
, and
T. C. B.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
,
6332
6343
(
2002
).
15.
Kiusalaas
,
J.
,
Numerical Methods in Engineering with Python 3
(
Cambridge University
,
Cambridge
,
2013
).
16.
Summerfield
,
M.
,
Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming
(
Pearson Education
,
Upper Saddle River, NJ
,
2007
).
17.
Bressert
,
E.
,
SciPy and NumPy: An Overview for Developers
(
O’Reilly Media
,
Sebastopol, CA
,
2012
).
18.
Hunter
,
J. D.
, “
Matplotlib: A 2D graphics environment
,”
Comput. Sci. Eng.
9
,
90
95
(
2007
).
19.
Inkson
,
N. J.
,
T. C. B.
McLeish
,
O. G.
Harlen
, and
D. J.
Groves
, “
Predicting low density polyethylene melt rheology in elongational and shear flows with “pom-pom” constitutive equations
,”
J. Rheol.
43
,
873
896
(
1999
).
20.
McLeish
,
T. C. B.
, and
R. G.
Larson
, “
Molecular constitutive equations for a class of branched polymers: The pom-pom polymer
,”
J. Rheol.
42
,
81
110
(
1998
).
21.
Branch
,
M. A.
,
T. F.
Coleman
, and
Y.
Li
, “
A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems
,”
SIAM J. Sci. Comput.
21
,
1
23
(
1999
).
22.
Singh
,
P. K.
,
J. M.
Soulages
, and
R. H.
Ewoldt
, “
On fitting data for parameter estimates: Residual weighting and data representation
,”
Rheol. Acta
58
,
341
359
(
2019
).
23.
Freund
,
J. B.
, and
R. H.
Ewoldt
, “
Quantitative rheological model selection: Good fits versus credible models using Bayesian inference
,”
J. Rheol.
59
,
667
701
(
2015
).
24.
Savitzky
,
A.
, and
M. J. E.
Golay
, “
Smoothing and differentiation of data by simplified least squares procedures
,”
Anal. Chem.
36
,
1627
1639
(
1964
).
25.
Tassieri
,
M.
,
J.
Ramírez
,
N. C.
Karayiannis
,
S. K.
Sukumaran
, and
Y.
Masubuchi
, “
i-Rheo GT: Transforming from time to frequency domain without artifacts
,”
Macromolecules
51
,
5055
5068
(
2018
).
26.
Auhl
,
D.
,
J.
Ramirez
,
A. E.
Likhtman
,
P.
Chambon
, and
C.
Fernyhough
, “
Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights
,”
J. Rheol.
52
,
801
835
(
2008
).
27.
Graham
,
R. S.
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
28.
Williams
,
M. L.
,
R. F.
Landel
, and
J. D.
Ferry
, “
The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids
,”
J. Am. Chem. Soc.
77
,
3701
3707
(
1955
).
29.
Colby
,
R. H.
,
L. J.
Fetters
, and
W. W.
Graessley
, “
The melt viscosity-molecular weight relationship for linear polymers
,”
Macromolecules
20
,
2226
2237
(
1987
).
30.
Read
,
D. J.
,
D.
Auhl
,
C.
Das
,
J.
den Doelder
,
M.
Kapnistos
,
I.
Vittorias
, and
T. C. B.
McLeish
, “
Linking models of polymerization and dynamics to predict branched polymer structure and flow
,”
Science
333
,
1871
1874
(
2011
).
31.
Tobita
,
H.
, “
Simultaneous long-chain branching and random scission: I. Monte Carlo simulation
,”
J. Polym. Sci. Part B Polym. Phys.
39
,
391
403
(
2001
).
32.
Read
,
D. J.
, “
From reactor to rheology in industrial polymers
,”
J. Polym. Sci. Part B Polym. Phys.
53
,
123
141
(
2015
).
33.
Dealy
,
J. M.
,
D. J.
Read
, and
R. G.
Larson
,
Structure and Rheology of Molten Polymers From Structure to Flow Behavior and Back Again
(
Hanser
,
Munich, Germany
,
2018
).
34.
Münstedt
,
H.
, “
Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution
,”
J. Rheol.
24
,
847
867
(
1980
).
35.
Doi
,
M.
, “
Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model
,”
J. Polym. Sci. Polym. Phys. Ed.
21
,
667
684
(
1983
).
36.
Blackwell
,
R. J.
,
T. C. B.
McLeish
, and
O. G.
Harlen
, “
Molecular drag-strain coupling in branched polymer melts
,”
J. Rheol.
44
,
121
136
(
2000
).
You do not currently have access to this content.