We present an investigation into the dynamic relaxation mechanisms of a polybutadiene blend composed of a four-arm star (10 wt. %) and a linear polymer matrix in the presence of an applied shear flow. Our focus was the response of the star polymer, which cannot be unambiguously assessed via linear viscoelastic measurements since the signature of the star polymer can barely be detected due to the dominant contribution of the linear matrix. By utilizing small-angle neutron scattering (SANS) coupled with a Couette shear device and a deuterated matrix polymer, we investigated the dynamics of the minority star component of the blend. Our results confirm that the stars deform anisotropically with increasing shear rate. We have compared the SANS data with predictions from the well-established scattering adaptation of the state-of-the-art tube model for entangled linear polymer melts undergoing shear, i.e., Graham, Likhtman, Milner, and McLeish (GLaMM) approach, appropriately modified following earlier studies in order to apply to the star. This modified model, GLaMM-R, includes the physics necessary to understand stress relaxation in both the linear and nonlinear flow regimes, i.e., contour length fluctuations, constraint release, convective constraint release, and chain retraction. The full scattering signal is due to the minority star component and, although the contribution of the linear chains is hidden from the neutron scattering, they still influence the star polymer molecular dynamics, with the applied shear rate ranging from approximately 8 to 24 s−1, below the inverse relaxation time of the linear component. This study provides another confirmation that the combination of rheology and neutron scattering is an indispensable tool for investigating the nonlinear dynamics of complex polymeric systems.

1.
Graham
,
R. S.
, and
T. C. B.
McLeish
, “
Emerging applications for models of molecular rheology
,”
J. Non-Newtonian Fluid Mech.
150
,
11
18
(
2008
).
2.
Ruocco
,
N.
,
L.
Dahbi
,
P.
Driva
,
N.
Hadjichristidis
,
J.
Allgaier
,
A.
Radulescu
,
M.
Sharp
,
P.
Lindner
,
E.
Straube
,
W.
Pyckhout-Hintzen
, and
D.
Richter
, “
Microscopic relaxation processes in branched-linear polymer blends by Rheo-SANS
,”
Macromolecules
46
,
9122
9133
(
2013
).
3.
Ruocco
,
N.
,
D.
Auhl
,
C.
Bailly
,
P.
Lindner
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
,
L. G.
Leal
,
N.
Hadjichristidis
, and
D.
Richter
, “
Branch point withdrawal in elongational startup flow by time-resolved small angle neutron scattering
,”
Macromolecules
49
,
4330
4339
(
2016
).
4.
Read
,
D. J.
,
D.
Auhl
,
C.
Das
,
J.
den Doelder
,
M.
Kapnistos
,
I.
Vittorias
, and
T. C. B.
McLeish
, “
Linking models of polymerization and dynamics to predict branched polymer structure and flow
,”
Science
333
,
1871
1874
(
2011
).
5.
Shivokhin
,
M. E.
,
E.
van Ruymbeke
,
C.
Bailly
,
D.
Kouloumasis
,
N.
Hadjichristidis
, and
A. E.
Likhtman
, “
Understanding constraint release in star/linear polymer blends
,”
Macromolecules
47
,
2451
2463
(
2014
).
6.
Pyckhout-Hintzen
,
W.
,
A.
Wischnewski
, and
D.
Richter
, “
Mixtures of polymer architectures: Probing the structure and dynamics with neutron scattering
,”
Polymer
105
,
378
392
(
2016
).
7.
van Ruymbeke
,
E.
,
S.
Coppola
,
L.
Balacca
,
S.
Righi
, and
D.
Vlassopoulos
, “
Decoding the viscoelastic response of polydisperse star/linear polymer blends
,”
J. Rheol.
54
,
507
538
(
2010
).
8.
Desai
,
P. S.
,
B. G.
Kang
,
M.
Katzarova
,
R.
Hall
,
Q.
Huang
,
S.
Lee
,
M.
Shivokhin
,
T.
Chang
,
D. C.
Venerus
,
J.
Mays
,
J. D.
Schieber
, and
R. G.
Larson
, “
Challenging tube and slip-link models: Predicting the linear rheology of blends of well-characterized star and linear 1,4-polybutadienes
,”
Macromolecules
49
(
13
),
4964
4977
(
2016
).
9.
Ebrahimi
,
T.
,
H.
Taghipour
,
D.
Grießl
,
P.
Mehrkhodavandi
,
S. G.
Hatzikiriakos
, and
E.
van Ruymbeke
, “
Binary blends of entangled star and linear poly(hydroxybutyrate): Effect of constraint release and dynamic tube dilation
,”
Macromolecules
50
,
2535
2546
(
2017
).
10.
Lentzakis
,
H.
,
S.
Costanzo
,
D.
Vlassopoulos
,
R. H.
Colby
,
D. J.
Read
, and
E.
van Ruymbeke
, “
Constraint release mechanisms for H-polymers moving in linear matrices of varying molar masses
,”
Macromolecules
52
,
3010
3028
(
2019
).
11.
Hall
,
R.
,
P. S.
Desai
,
B. G.
Kang
,
Q.
Huang
,
S.
Lee
,
T.
Chang
,
D. C.
Venerus
,
J.
Mays
,
K.
Ntetsikas
,
G.
Polymeropoulos
,
N.
Hadjichristidis
, and
R. G.
Larson
, “
Assessing the range of validity of current tube models through analysis of a comprehensive set of star−linear 1,4-polybutadiene polymer blends
,”
Macromolecules
52
,
7831
7846
(
2019
).
12.
Graham
,
R. S.
,
J.
Bent
,
N.
Clarke
,
L. R.
Hutchings
,
R. W.
Richards
,
T.
Gough
,
D. M.
Hoyle
,
O. G.
Harlen
,
I.
Grillo
,
D.
Auhl
, and
T. C. B.
McLeish
, “
The long-chain dynamics in a model homopolymer blend under strong flow: Small-angle neutron scattering and theory
,”
Soft Matter
5
,
2383
2389
(
2009
).
13.
Lentzakis
,
H.
,
D.
Vlassopoulos
,
D. J.
Read
,
H.
Lee
, and
T.
Chang
, “
Uniaxial extensional rheology of well-characterized comb polymers
,”
J. Rheol.
57
,
605
625
(
2013
).
14.
Likhtman
,
A.
, and
T. C. B.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
,
6332
6343
(
2002
).
15.
Das
,
C.
,
N. J.
Inkson
,
D. J.
Read
,
M. A.
Kelmanson
, and
T. C. B.
McLeish
, “
Computational linear rheology of general branch-on-branch polymers
,”
J. Rheol.
50
,
207
234
(
2006
).
16.
Das
,
C.
,
D. J.
Read
,
D.
Auhl
,
M.
Kapnistos
,
J.
den Doelder
,
I.
Vittorias
, and
T. C. B.
McLeish
, “
Numerical prediction of nonlinear rheology of branched polymer melts
,”
J. Rheol.
58
,
737
757
(
2014
).
17.
Milner
,
S. T.
,
T. C. B.
McLeish
,
R. N.
Young
,
A.
Hakiki
, and
J. M.
Johnson
, “
Dynamic dilution, constraint-release, and star−linear blends
,”
Macromolecules
31
,
9345
9353
(
1998
).
18.
Graham
,
R. S.
,
J.
Bent
,
L. R.
Hutchings
,
R. W.
Richards
,
D. J.
Groves
,
J.
Embery
,
T. M.
Nicholson
,
T. C. B.
McLeish
,
A. E.
Likhtman
,
O. G.
Harlen
,
D. J.
Read
,
T.
Gough
,
R.
Spares
,
P. D.
Coates
, and
I.
Grillo
, “
Measuring and predicting the dynamics of linear monodisperse entangled polymers in rapid flow through an abrupt contraction. A small angle neutron scattering study
,”
Macromolecules
39
,
2700
2709
(
2006
).
19.
Graham
,
R. S.
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
20.
van Ruymbeke
,
E.
,
R.
Keunings
, and
C.
Bailly
, “
Prediction of linear viscoelastic properties for polydisperse mixtures of entangled star and linear polymers: Modified tube based model and comparison with experimental results
,”
J. Non-Newtonian Fluid Mech.
128
,
7
22
(
2005
).
21.
Qin
,
J.
, and
S. T.
Milner
, “
Tube diameter of oriented and stretched polymer melts
,”
Macromolecules
46
,
1659
1672
(
2013
).
22.
Bick
,
D. K.
, and
T. C. B.
McLeish
, “
Topological contributions to nonlinear elasticity in branched polymers
,”
Phys. Rev. Lett.
76
,
2587
2590
(
1996
).
23.
Kapnistos
,
M.
,
K. M.
Kirkwood
,
J.
Ramirez
,
D.
Vlassopoulos
, and
L. G.
Leal
, “
Nonlinear rheology of model comb polymers
,”
J. Rheol.
53
,
1133
1153
(
2009
).
24.
Marrucci
,
G.
, “
Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule
,”
J. Non-Newtonian Fluid Mech.
62
,
279
289
(
1996
).
25.
Tezel
,
A. K.
,
J. P.
Oberhauser
,
R. S.
Graham
,
K.
Jagannathan
,
T. C. B.
McLeish
, and
L. G.
Leal
, “
The nonlinear response of entangled star polymers to start-up of shear flow
,”
J. Rheol.
53
,
1193
1214
(
2009
).
26.
McLeish
,
T. C. B.
, “
Tube theory of entangled polymer dynamics
,”
Adv. Phys.
51
,
1379
1527
(
2002
).
27.
Watanabe
,
H.
, “
Viscoelasticity and dynamics of entangled polymers
,”
Prog. Polym. Sci.
24
,
1253
1403
(
1999
).
28.
Doi
,
M.
, and
S.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
New York,
1989
).
29.
de Gennes
,
P. G.
,
Scaling Concepts in Polymer Physics
(
Cornell University
,
New York
,
1979
).
30.
Milner
,
S. T.
,
T. C. B.
McLeish
, and
A. E.
Likhtman
, “
Microscopic theory of convective constraint release
,”
J. Rheol.
45
,
539
563
(
2001
).
31.
Auhl
,
D.
,
P.
Chambon
,
T. C. B.
McLeish
, and
D. J.
Read
, “
Elongational flow of blends of long and short polymers: Effective stretch relaxation time
,”
Phys. Rev. Lett.
103
,
136001
(
2009
).
32.
van Ruymbeke
,
E.
,
Y.
Masubuchi
, and
H.
Watanabe
, “
Effective value of the dynamic dilution exponent in bidisperse linear polymers: From 1 to 4/3
,”
Macromolecules
45
,
2085
2098
(
2012
).
33.
Kapnistos
,
M.
,
D.
Vlassopoulos
,
J.
Roovers
, and
L. G.
Leal
, “
Linear rheology of architecturally complex macromolecules: Comb polymers with linear backbones
,”
Macromolecules
38
,
7852
7862
(
2005
).
34.
Kirkwood
,
K. M.
,
L. G.
Leal
,
D.
Vlassopoulos
,
P.
Driva
, and
N.
Hadjichristidis
, “
Stress relaxation of comb polymers with short branches
,”
Macromolecules
42
,
9592
9608
(
2009
).
35.
Tezel
,
A. K.
,
L. G.
Leal
, and
T. C. B.
McLeish
, “
Rheo-optical evidence of CCR in an entangled four-arm star
,”
Macromolecules
38
,
1451
1455
(
2005
).
36.
Tezel
,
A. K.
, and
L. G.
Leal
, “
Shear rheology of asymmetric star polymers
,”
Macromolecules
39
,
4605
4614
(
2006
).
37.
Blanchard
,
A.
,
R. S.
Graham
,
M.
Heinrich
,
W.
Pyckhout-Hintzen
,
D.
Richter
,
A. E.
Likhtman
,
T. C. B.
McLeish
,
D. J.
Read
,
E.
Straube
, and
J.
Kohlbrecher
, “
Small angle neutron scattering observation of chain retraction after a large step deformation
,”
Phys. Rev. Lett.
95
,
166001
(
2005
).
38.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Convective orientational renewal in entangled polymers
,”
J. Non-Newtonian Fluid Mech.
95
,
363
374
(
2000
).
39.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Convective constraint release (CCR) revisited
,”
J. Rheol.
58
,
89
102
(
2014
).
40.
Read
,
D. J.
,
K.
Jagannathan
,
S. K.
Sukumaran
, and
D.
Auhl
, “
A full-chain constitutive model for bidisperse blends of linear polymers
,”
J. Rheol.
56
,
823
873
(
2012
).
41.
Boudara
,
V. A. H.
,
J. D.
Peterson
,
L. G.
Leal
, and
D. J.
Read
, “
Nonlinear rheology of polydisperse blends of entangled linear polymers: Rolie-Double-Poly models
,”
J. Rheol.
63
,
71
91
(
2019
).
42.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics (Chemistry)
(
Oxford University
,
New York
,
2003
).
43.
Bates
,
F. S.
,
G. D.
Wignall
, and
W. C.
Koehler
, “
Critical behavior of binary liquid mixtures of deuterated and protonated
,”
Phys. Rev. Lett.
55
,
2425
2428
(
1985
).
44.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
(
Wiley
,
New York
,
1961
).
45.
Park
,
S. J.
,
P. S.
Desai
,
X.
Chen
, and
R. G.
Larson
, “
Universal relaxation behavior of entangled 1,4-polybutadiene melts in the transition. Frequency range
,”
Macromolecules
48
,
4122
4131
(
2015
).
46.
Hjelm
,
R. P.
, “
The resolution of TOF low-Q diffractometers: Instrumental, data acquisition and reduction factors
,”
J. Appl. Cryst.
21
,
618
628
(
1988
).
47.
Pakdel
,
P.
, and
G. H.
McKinley
, “
Elastic instability and curved streamlines
,”
Phys. Rev. Lett.
77
,
2459
2462
(
1996
).
48.
Yearley
,
E. J.
,
L. A.
Sasa
,
C. F.
Welch
,
M. A.
Taylor
,
K. M.
Kupcho
,
R. D.
Gilbertson
, and
R. P.
Hjelm
, “
The Couette configuration of the Los Alamos Neutron Science Center neutron rheometer for the investigation of polymers in the bulk via small-angle neutron scattering
,”
Rev. Sci. Instrum.
81
,
045109
(
2010
).
49.
Graessley
,
W. W.
,
Polymer Liquids and Networks: Dynamics and Rheology
(
Garland Science
,
New York
,
2008
).
50.
Fetters
,
L. J.
,
D. J.
Lohse
,
D.
Richter
,
T. A.
Witten
, and
A.
Zirkelt
, “
Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties
,”
Macromolecules
27
,
4639
4647
(
1994
).
You do not currently have access to this content.