To enable robust rheological measurements of the properties of yield stress fluids, we introduce a class of modified vane fixtures with fractal-like cross-sectional structures. A greater number of outer contact edges leads to increased kinematic homogeneity at the point of yielding and beyond. The vanes are 3D printed (3DP) using a desktop stereolithography machine, making them inexpensive (disposable), chemically compatible with a wide range of solvents, and readily adaptable as a base for further design innovations. To complete the tooling set, we introduce a textured 3DP cup, which attaches to a standard rheometer base. We discuss general design criteria for 3DP rheometer vanes, including consideration of sample volume displaced by the vanes, stress homogeneity, and secondary flows that constrain the parameter space of potential designs. We also develop a conversion from machine torque to material shear stress for vanes with an arbitrary number of arms. We compare a family of vane designs by measuring the viscosity of Newtonian calibration oils with error <5% relative to reference measurements made with a cone-and-plate geometry. We measure the flow curve of a simple Carbopol yield stress fluid and show that a 24-armed 3DP fractal vane agrees within 1% of reference measurements made with a roughened cone-and-plate geometry. Last, we demonstrate use of the 24-armed fractal vane to probe the thixo-elastoviscoplastic response of a Carbopol-based hair gel, a jammed emulsion (mayonnaise), and a strongly alkaline carbon black-based battery slurry.

1.
Coussot
,
P.
, “
Yield stress fluid flows: A review of experimental data
,”
J. Nonnewton. Fluid Mech.
211
,
31
49
(
2014
).
2.
Joshi
,
Y. M.
, and
G.
Petekidis
, “
Yield stress fluids and ageing
,”
Rheol. Acta
57
,
521
549
(
2018
).
3.
Bonn
,
D.
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
1
40
(
2017
).
4.
Dinkgreve
,
M.
,
M.
Fazilati
,
M. M.
Denn
, and
D.
Bonn
, “
Carbopol: From a simple to a thixotropic yield stress fluid
,”
J. Rheol.
62
,
773
780
(
2018
).
5.
Møller
,
P. C. F.
,
J.
Mewis
, and
D.
Bonn
, “
Yield stress and thixotropy: On the difficulty of measuring yield stresses in practice
,”
Soft Matter
2
,
274
283
(
2006
).
6.
Barnes
,
H. A.
, and
Q. D.
Nguyen
, “
Rotating vane rheometry—A review
,”
J. Nonnewton. Fluid Mech.
98
,
1
14
(
2001
).
7.
Coussot
,
P.
,
L.
Tocquer
,
C.
Lanos
, and
G.
Ovarlez
, “
Macroscopic vs. local rheology of yield stress fluids
,”
J. Nonnewton. Fluid Mech.
158
,
85
90
(
2009
).
8.
Divoux
,
T.
,
D.
Tamarii
,
C.
Barentin
, and
S.
Manneville
, “
Transient shear banding in a simple yield stress fluid
,”
Phys. Rev. Lett.
104
,
1
4
(
2010
).
9.
Ferraris
,
C. F.
,
P.
Billberg
,
R.
Ferron
,
D.
Feys
,
J.
Hu
,
S.
Kawashima
,
E.
Koehler
,
M.
Sonebi
,
J.
Tanesi
, and
N.
Tregger
, “
Role of rheology in achieving successful concrete performance
,”
Concr. Int.
39
,
43
51
(
2017
).
10.
Dzuy
,
N. Q.
, and
D. V.
Boger
, “
Yield stress measurement for concentrated suspensions
,”
J. Rheol.
27
,
321
349
(
1983
).
11.
Daubert
,
C. R.
,
J. A.
Tkachuk
, and
V. D.
Truong
, “
Quantitative measurement of food spreadability using the vane method
,”
J. Texture Stud.
29
,
427
435
(
1998
).
12.
Truong
,
V. D.
,
C. R.
Daubert
,
M. A.
Drake
, and
S. R.
Baxter
, “
Vane rheometry for textural characterization of cheddar cheeses: Correlation with other instrumental and sensory measurements
,”
LWT—Food Sci. Technol.
35
,
305
314
(
2002
).
13.
Melito
,
H. S.
, and
C. R.
Daubert
, “
Rheological innovations for characterizing food material properties
,”
Annu. Rev. Food Sci. Technol.
2
,
153
179
(
2012
).
14.
Bui
,
H.
The application of rheology in the development of cosmetic products
, Society of Rheology Annual Meeting PG18 (Society of Rheology,
2019
).
15.
Kogan
,
M.
,
L.
Ducloué
,
J.
Goyon
,
X.
Chateau
,
O.
Pitois
, and
G.
Ovarlez
, “
Mixtures of foam and paste: Suspensions of bubbles in yield stress fluids
,”
Rheol. Acta
52
,
237
253
(
2013
).
16.
Wei
,
P.
,
H.
Leng
,
Q.
Chen
,
R. C.
Advincula
, and
E. B.
Pentzer
, “
Reprocessable 3D-printed conductive elastomeric composite foams for strain and gas sensing
,”
ACS Appl. Polym. Mater.
1
,
885
892
(
2019
).
17.
Courtial
,
E.-J.
,
C.
Perrinet
,
A.
Colly
,
D.
Mariot
,
J.-M.
Frances
,
R.
Fulchiron
, and
C.
Marquette
, “
Silicone rheological behavior modification for 3D printing: Evaluation of yield stress impact on printed object properties
,”
Addit. Manuf.
28
,
50
57
(
2019
).
18.
Muth
,
J. T.
,
D. M.
Vogt
,
R. L.
Truby
,
D. B.
Kolesky
,
R. J.
Wood
, and
J. A.
Lewis
, “
Embedded 3D printing of strain sensors within highly stretchable elastomers
,”
Adv. Mater.
26
,
6307
6312
(
2014
).
19.
Grosskopf
,
A. K.
,
R. L.
Truby
,
H.
Kim
,
A.
Perazzo
,
J. A.
Lewis
, and
H. A.
Stone
, “
Viscoplastic matrix materials for embedded 3D printing
,”
ACS Appl. Mater. Interfaces
10
,
23353
23361
(
2018
).
20.
Moreno
,
R.
, “
Colloidal processing of ceramics and composites
,”
Adv. Appl. Ceram.
111
,
246
253
(
2012
).
21.
Qian
,
Y.
, and
S.
Kawashima
, “
Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy
,”
Cem. Concr. Compos.
86
,
288
296
(
2018
).
22.
Larson
,
R. G.
, and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
23.
Dimitriou
,
C. J.
, and
G. H.
McKinley
, “
A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid
,”
Soft Matter
10
,
6619
6644
(
2014
).
24.
Fielding
,
S. M.
,
P.
Sollich
, and
M. E.
Cates
, “
Ageing and rheology in soft materials
,”
J. Rheol.
44
,
323
369
(
2000
).
25.
Nguyen
,
Q. D.
, and
D. V.
Boger
, “
Characterization of yield stress fluids with concentric cylinder viscometers
,”
Rheol. Acta
26
,
508
515
(
1987
).
26.
Dimitriou
,
C. J.
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)
,”
J. Rheol.
57
,
27
70
(
2013
).
27.
Yoon
,
J.
, and
C.
El Mohtar
, “
Disturbance effect on time-dependent yield stress measurement of bentonite suspensions
,”
Geotech. Test. J.
36
,
78
87
(
2013
).
28.
Zhang
,
X. D.
,
D. W.
Giles
,
V. H.
Barocas
,
K.
Yasunaga
, and
C. W.
Macosko
, “
Measurement of foam modulus via a vane rheometer
,”
J. Rheol.
42
,
871
889
(
2002
).
29.
Patarin
,
J.
,
H.
Galliard
,
A.
Magnin
, and
B.
Goldschmidt
, “
Vane and plate-plate rheometry of cheeses under oscillations and large strains: A comparative study and experimental conditions analysis
,”
Int. Dairy J.
38
,
24
30
(
2014
).
30.
Nguyen
,
Q. D.
,
T.
Akroyd
,
D. C.
De Kee
, and
L.
Zhu
, “
Yield stress measurements in suspensions: An inter-laboratory study
,”
Korea-Aust. Rheol. J.
18
,
15
24
(
2006
).
31.
Atkinson
,
C.
, and
J. D.
Sherwood
, “
The torque on a rotating n-bladed vane in a Newtonian fluid or linear elastic medium
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
438
,
183
196
(
1992
).
32.
Baravian
,
C.
,
A.
Lalante
, and
A.
Parker
, “
Vane rheometry with a large, finite gap
,”
Appl. Rheol.
12
,
81
87
(
2002
).
33.
Barnes
,
H. A.
, and
J. O.
Carnali
, “
The vane-in-cup as a novel rheometer geometry for shear thinning and thixotropic materials
,”
J. Rheol.
34
,
841
866
(
1990
).
34.
Keentok
,
M.
,
J. F.
Milthorpe
, and
E.
O’Donovan
, “
On the shearing zone around rotating vanes in plastic liquids: Theory and experiment
,”
J. Nonnewton. Fluid Mech.
17
,
23
35
(
1985
).
35.
Ovarlez
,
G.
,
F.
Mahaut
,
F.
Bertrand
, and
X.
Chateau
, “
Flows and heterogeneities with a vane tool: Magnetic resonance imaging measurements
,”
J. Rheol.
55
,
197
223
(
2011
).
36.
Gutierrez-Barranco
,
E.
,
L.
Parras
,
C.
del Pino
, and
F. J.
Rubio-Hernandez
,
Flow visualizations in a rotating vane rheometer
, in
Perspectives in Fundamental and Applied Rheology
(
2013
), pp.
401
406
.
37.
Sherwood
,
J. D.
, and
G. H.
Meeten
, “
The use of the vane to measure the shear modulus of linear elastic solids
,”
J. Nonnewton. Fluid Mech.
41
,
101
118
(
1991
).
38.
Potanin
,
A.
, “
3D simulations of the flow of thixotropic fluids, in large-gap Couette and vane-cup geometries
,”
J. Nonnewton. Fluid Mech.
165
,
299
312
(
2010
).
39.
Liddell
,
P. V.
, and
D. V.
Boger
, “
Yield stress measurements with the vane
,”
J. Nonnewton. Fluid Mech.
63
,
235
261
(
1996
).
40.
Meeten
,
G. H.
, and
J. D.
Sherwood
,
Vane techniques for shear-sensitive and wall-slipping fluids
, in
Theoretical and Applied Rheology
(
Elsevier
,
New York
,
1992
), pp.
935
937
.
41.
Feys
,
D.
,
R.
Verhoeven
, and
G.
De Schutter
, “
Evaluation of time independent rheological models applicable to fresh self-compacting concrete
,”
Appl. Rheol.
17
,
1
10
(
2007
).
42.
Pashias
,
N.
,
D. V.
Boger
,
J.
Summers
, and
D. J.
Glenister
, “
A fifty cent rheometer for yield stress measurement
,”
J. Rheol.
40
,
1179
1189
(
2002
).
43.
Fisher
,
D. T.
,
S. A.
Clayton
,
D. V.
Boger
, and
P. J.
Scales
, “
The bucket rheometer for shear stress-shear rate measurement of industrial suspensions
,”
J. Rheol.
51
,
821
831
(
2007
).
44.
Chevrel
,
M. O.
,
A. J. L.
Harris
,
M. R.
James
,
L.
Calabrò
,
L.
Gurioli
, and
H.
Pinkerton
, “
The viscosity of pāhoehoe lava: In situ syn-eruptive measurements from Kilauea, Hawaii
,”
Earth Planet. Sci. Lett.
493
,
161
171
(
2018
).
45.
Pinkerton
,
H.
, and
R. S. J.
Sparks
, “
Field measurements of the rheology of lava
,”
Nature
276
,
383
385
(
1978
).
46.
Bikos
,
D. A.
, and
T. G.
Mason
, “
Customizable tool geometries by additive manufacturing for mechanical rheometry of soft matter
,”
J. Rheol.
60
,
1257
1267
(
2016
).
47.
Raayai
,
S.
, “
Geometry mediated drag reduction using riblets and wrinkled surface textures
,” Ph.D. thesis (
Massachusetts Institute of Technology
, Cambridge, MA,
2018
).
48.
Ngo
,
T. D.
,
A.
Kashani
,
G.
Imbalzano
,
K. T. Q.
Nguyen
, and
D.
Hui
, “
Additive manufacturing (3D printing): A review of materials, methods, applications and challenges
,”
Compos. Part B Eng.
143
,
172
196
(
2018
).
49.
Coussot
,
P.
,
Rheometry of Pastes, Suspensions, and Granular Materials
(
Wiley
,
New York
,
2005
).
50.
Balmforth
,
N. J.
,
I. A.
Frigaard
, and
G.
Ovarlez
, “
Yielding to stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2013
).
51.
Herschel
,
W. H.
, and
R.
Bulkley
, “
Konsistenzmessungen von gummi-benzollosungen
,”
Colloid Polym. Sci.
39
,
291
300
(
1926
).
52.
Saramito
,
P.
, “
A new constitutive equation for elastoviscoplastic fluid flows
,”
J. Nonnewton. Fluid Mech.
145
,
1
14
(
2007
).
53.
Saramito
,
P.
, “
A new elastoviscoplastic model based on the Herschel-Bulkley viscoplastic model
,”
J. Nonnewton. Fluid Mech.
158
,
154
161
(
2009
).
54.
Coussot
,
P.
,
H.
Tabuteau
,
X.
Chateau
,
L.
Tocquer
, and
G.
Ovarlez
, “
Aging and solid or liquid behavior in pastes
,”
J. Rheol.
50
,
975
994
(
2006
).
55.
Medina-Bañuelos
,
E. F.
,
B. M.
Marín-Santibáñez
,
J.
Pérez-González
, and
D. M.
Kalyon
, “
Rheo-PIV analysis of the vane in cup flow of a viscoplastic microgel
,”
J. Rheol.
63
,
905
915
(
2019
).
56.
Macosko
,
C. W.
,
Rheology Principles, Measurements, and Applications
(
Wiley
,
New York
,
1994
), pp.
190
193
.
57.
Ozalp
,
C.
,
A.
Pinarbasi
, and
B.
Sahin
, “
Experimental measurement of flow past cavities of different shapes
,”
Exp. Therm. Fluid Sci.
34
,
505
515
(
2010
).
58.
West
,
G. B.
,
J. H.
Brown
, and
B. J.
Enquist
, “
The fourth dimension of life: Fractal geometry and allometric scaling of organisms
,”
Science
284
,
1677
1679
(
1999
).
59.
Warme
,
D. M.
,
Spanning trees in hypergraphs with applications to Steiner trees
,
ProQuest. theses
(Unviersity of Virginia, Charlottesville,
1998
), p.
122
.
60.
Kalpakjian
,
S.
, and
S. R.
Schmid
,
Manufacturing Engineering and Technology
(Pearson Publications, Singapore,
2013
).
61.
Bourell
,
D.
,
J. P.
Kruth
,
M.
Leu
,
G.
Levy
,
D.
Rosen
,
A. M.
Beese
, and
A.
Clare
, “
Materials for additive manufacturing
,”
CIRP Ann. Manuf. Technol.
66
,
659
681
(
2017
).
62.
Owens
,
C. E.
, and
A. J.
Hart
, “
High-precision modular microfluidics by micromilling of interlocking injection-molded blocks
,”
Lab Chip
18
,
890
901
(
2018
).
63.
Benmouffok-Benbelkacem
,
G.
,
F.
Caton
,
C.
Baravian
, and
S.
Skali-Lami
, “
Non-linear viscoelasticity and temporal behavior of typical yield stress fluids: Carbopol, xanthan and ketchup
,”
Rheol. Acta
49
,
305
314
(
2010
).
64.
Chaparian
,
E.
, and
I. A.
Frigaard
, “
Cloaking: Particles in a yield-stress fluid
,”
J. Nonnewton. Fluid Mech.
243
,
47
55
(
2017
).
65.
Goshawk
,
J. A.
,
D. M.
Binding
,
D. B.
Kell
, and
R.
Goodacre
, “
Rheological phenomena occurring during the shearing flow of mayonnaise
,”
J. Rheol.
42
,
1537
1553
(
1998
).
66.
Ma
,
L.
, and
G. V.
Barbosa-Canovas
, “
Rheological characterization of mayonnaise. Part II: Flow and viscoelastic properties at different oil and xanthan gum concentrations
,”
J. Food Eng.
25
,
409
425
(
1994
).
67.
Ma
,
L.
, and
G. V.
Barbosa-Canovas
, “
Rheological characterization of mayonnaise. Part I: Slippage at different oil and xanthan gum concentrations
,”
J. Food Eng.
25
,
397
408
(
1995
).
68.
Keshavarz
,
B.
,
T.
Divoux
,
S.
Manneville
, and
G. H.
McKinley
, “
Nonlinear viscoelasticity and generalized failure criterion for polymer gels
,”
ACS Macro Lett.
6
,
663
667
(
2017
).
69.
Jaishankar
,
A.
, and
G. H.
McKinley
, “
Power-law rheology in the bulk and at the interface quasi-properties and fractional constitutive equations author for correspondence
,”
Proc. R. Soc. A
469
, 1–8 (
2013
).
70.
Bagley
,
R. L.
, and
P. J.
Torvik
, “
On the fractional calculus model of viscoelastic behavior
,”
J. Rheol.
30
,
133
155
(
1986
).
71.
Ng
,
T. S.-K.
, and
G. H.
McKinley
, “
Power law gels at finite strains: The nonlinear rheology of gluten gels
,”
J. Rheol.
52
,
417
(
2008
).
72.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
Letter to the editor modeling the nonmonotonic time-dependence of viscosity bifurcation in thixotropic yield-stress fluids
,”
J. Rheol.
63
,
673
675
(
2019
).
73.
Fan
,
F. Y.
,
W. H.
Woodford
,
Z.
Li
,
N.
Baram
,
K. C.
Smith
,
A.
Helal
,
G. H.
McKinley
,
W. C.
Carter
, and
Y. M.
Chiang
, “
Polysulfide flow batteries enabled by percolating nanoscale conductor networks
,”
Nano Lett.
14
,
2210
2218
(
2014
).
74.
Smith
,
K. C.
,
Y.-M.
Chiang
, and
W.
Craig Carter
, “
Maximizing energetic efficiency in flow batteries utilizing Non-Newtonian fluids
,”
J. Electrochem. Soc.
161
,
A486
A496
(
2014
).
75.
Wei
,
T. S.
,
F. Y.
Fan
,
A.
Helal
,
K. C.
Smith
,
G. H.
McKinley
,
Y. M.
Chiang
, and
J. A.
Lewis
, “
Biphasic electrode suspensions for Li-ion semi-solid flow cells with high energy density, fast charge transport, and low-dissipation flow
,”
Adv. Energy Mater.
5
,
1
7
(
2015
).
76.
Derakhshandeh
,
B.
,
S. G.
Hatzikiriakos
, and
C. P. J.
Bennington
, “
Rheology of pulp suspensions using ultrasonic Doppler velocimetry
,”
Rheol. Acta
49
,
1127
1140
(
2010
).
77.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1987
).
78.
See supplementary material at https://doi.org/10.1122/1.5132340 for four printable .stl files included for download with units of [mm]. These are (1) a 4-arm linear vane, (2) a 12-arm fractal vane, and (3) a 24-arm fractal vane with couplings compatible with TA Instruments DHR series and AR-G2 rheometers, as described in this paper. In addition we include (4) one 12-arm fractal vane with a coupling compatible with TA Instruments ARES series rheometers, which has not been fine-tuned for concentric mounting. Each vane has a radius of 7.5 mm and a length of 30 mm.

Supplementary Material

You do not currently have access to this content.