The rheology of crystallizing polymers is critical to polymer processing, but our current understanding of how crystallinity affects rheology during crystallization is lacking. The challenge is twofold: first, we must measure rheology simultaneously with crystallinity, and then we must develop models that can describe those measurements as well as prior phenomenological observations. Here, we further develop a generalized effective medium model to describe the frequency-dependent shear modulus of a crystallizing polymer. Through a simple model system, we show that the percolation transition in the effective medium model recovers the relaxation dynamics of a critical gel with a relaxation spectrum that can be approximated as the power mean of the initial melt and final semicrystalline material. We demonstrate the success of this model on the isothermal crystallization of polycaprolactones. From the generalized effective medium model, we can calculate the percolation fraction and power-law relaxation exponent at the critical point, even when the measurement frequency range is dominated by shear thinning of the melt phase.

1.
Katti
,
S. S.
, and
M.
Schultz
, “
The microstructure of injection-molded semicrystalline polymers: A review
,”
Polym. Eng. Sci.
22
,
1001
1017
(
1982
).
2.
Doufas
,
A. K.
, and
A. J.
McHugh
, “
Simulation of film blowing including flow-induced crystallization
,”
J. Rheol.
45
,
1085
1104
(
2001
).
3.
van Meerveld
,
J.
,
M.
Hütter
, and
G. W. M.
Peters
, “
Continuum model for the simulation of fiber spinning, with quiescent and flow-induced crystallization
,”
J. Nonnewton. Fluid Mech.
150
,
177
195
(
2008
).
4.
McIlroy
,
C.
,
J. E.
Seppala
, and
A. P.
Kotula
,
Combining modeling and measurements to predict crystal morphology in material extrusion
, in
Polymer-Based Additive Manufacturing: Recent Developments
(
American Chemical Society
,
Washington DC
,
2019
).
5.
Gauthier
,
C.
,
J.-F.
Chailan
, and
J.
Chauchard
, “
Utilisation de l'analyse viscoélastique dynamique à l'étude de la cristallisation isotherme du poly(téréphtalate d'ethylène) amorphe. Application à des composites unidirectionnels avec fibres de verre
,”
Makromol. Chem.
193
,
1001
1009
(
1992
).
6.
Pogodina
,
N. V.
,
H. H.
Winter
, and
S.
Srinivas
, “
Strain effects on physical gelation of crystallizing isotactic polypropylene
,”
J. Polym. Sci. Part B
37
,
3512
3519
(
1999
).
7.
Tanner
,
R. I.
, “
On the flow of crystallizing polymers: I. Linear regime
,”
J. Nonnewton. Fluid Mech.
112
,
251
268
(
2003
).
8.
Roozemond
,
P. C.
,
V.
Janssens
,
P.
Van Puyvelde
, and
G. W. M.
Peters
, “
Suspension-like hardening behavior of HDPE and time-hardening superposition
,”
Rheol. Acta
51
,
97
109
(
2012
).
9.
Christensen
,
R. M.
, and
K. H.
Lo
, “
Solutions for effective shear properties in three phase sphere and cylinder models
,”
J. Mech. Phys. Solids
27
,
315
330
(
1979
).
10.
Kotula
,
A. P.
, and
K. B.
Migler
, “
Evaluating models for polycaprolactone crystallization via simultaneous rheology and Raman spectroscopy
,”
J. Rheol.
62
,
343
356
(
2018
).
11.
Pogodina
,
N. V.
, and
H. H.
Winter
, “
Polypropylene crystallization as a physical gelation process
,”
Macromolecules
31
,
8164
8172
(
1998
).
12.
Coppola
,
S.
,
S.
Acierno
,
N.
Grizzuti
, and
D.
Vlassopoulos
, “
Viscoelastic behavior of semicrystalline thermoplastic polymers during the early stages of crystallization
,”
Macromolecules
39
,
1507
1514
(
2006
).
13.
Acierno
,
S.
,
N.
Grizzuti
, and
H. H.
Winter
, “
Effects of molecular weight on the isothermal crystallization of poly(1-butene)
,”
Macromolecules
35
,
5043
5048
(
2002
).
14.
Acierno
,
S.
,
E.
Di Maio
,
S.
Iannace
, and
N.
Grizzuti
, “
Structure development during crystallization of polycaprolactone
,”
Rheol. Acta
45
,
387
392
(
2006
).
15.
Horst
,
R. H.
, and
H. H.
Winter
, “
Stable critical gels of a crystallizing copolymer of ethene and 1-butene
,”
Macromolecules
33
,
130
136
(
2000
).
16.
Gelfer
,
Y.
, and
H. H.
Winter
, “
Effect of branch distribution on rheology of LLDPE during early stages of crystallization
,”
Macromolecules
32
,
8974
8981
(
1999
).
17.
Schwittay
,
C.
,
M.
Mours
, and
H. H.
Winter
, “
Rheological expression of physical gelation in polymers
,”
Faraday Discuss.
101
,
93
104
(
1995
).
18.
Khanna
,
Y. P.
, “
Rheological mechanism and overview of nucleated crystallization kinetics
,”
Macromolecules
26
,
3639
3643
(
1993
).
19.
Boutahar
,
K.
,
C.
Carrot
, and
J.
Guillet
, “
Crystallization of polyolefins from rheological measurements relation between the transformed fraction and the dynamic moduli
,”
Macromolecules
31
,
1921
1929
(
1998
).
20.
Carrot
,
C.
,
J.
Guillet
, and
K.
Boutahar
, “
Rheological behavior of a semi-crystalline polymer during isothermal crystallization
,”
Rheol. Acta
32
,
566
574
(
1993
).
21.
Ratzsch
,
K.-F.
,
C.
Friedrich
, and
M.
Wilhelm
, “
Low-field rheo-NMR: A novel combination of NMR relaxometry with high end shear rheology
,”
J. Rheol.
61
,
905
917
(
2017
).
22.
Pantani
,
R.
,
V.
Speranza
, and
G.
Titomanlio
, “
Simultaneous morphological and rheological measurements on polypropylene: Effect of crystallinity on viscoelastic parameters
,”
J. Rheol.
59
,
377
390
(
2015
).
23.
Roy
,
D.
,
D. J.
Audus
, and
K. B.
Migler
, “
Rheology of crystallizing polymers: The role of spherulitic superstructures, gap height, and nucleation densities
,”
J. Rheol.
63
,
851
862
(
2019
).
24.
Pogodina
,
N. V.
,
S. K.
Siddiquee
,
J. W.
van Egmond
, and
H. H.
Winter
, “
Correlation of rheology and light scattering in isotactic polypropylene during early stages of crystallization
,”
Macromolecules
32
,
1167
1174
(
1999
).
25.
Pogodina
,
N. V.
,
V. P.
Lavrenko
,
S.
Srinivas
, and
H. H.
Winter
, “
Rheology and structure of isotactic polypropylene near the gel point: Quiescent and shear-induced crystallization
,”
Polymer
42
,
9031
9043
(
2001
).
26.
Titomanlio
,
G.
,
V.
Speranza
, and
V.
Brucato
, “
On the simulation of thermoplastic injection moulding process: II. Relevance of interaction between flow and crystallization
,”
Int. Polym. Process.
12
,
45
53
(
1997
).
27.
Steenbakkers
,
R. J. A.
, and
G. W. M.
Peters
, “
Suspension-based rheological modeling of crystallizing polymer melts
,”
Rheol. Acta
47
,
643
665
(
2008
).
28.
Räntzsch
,
V.
,
M. B.
Özen
,
K.-F.
Ratzsch
,
E.
Stellamanns
,
M.
Sprung
,
G.
Guthausen
, and
M.
Wilhelm
, “
Polymer crystallization studied by hyphenated rheology techniques: Rheo-NMR, rheo-SAXS, and rheo-microscopy
,”
Macromol. Mater. Eng.
304
,
1800586
(
2018
).
29.
Janssens
,
V.
,
C.
Block
,
G.
Van Assche
,
B.
Van Mele
, and
P.
Van Puyvelde
, “
RheoDSC: Design and validation of a new hybrid measurement technique
,”
J. Therm. Anal. Calorim.
98
,
675
681
(
2009
).
30.
Kotula
,
A. P.
,
M. W.
Meyer
,
F. D.
Vito
,
J.
Plog
,
A. R. H.
Walker
, and
K. B.
Migler
, “
The rheo-Raman microscope: Simultaneous chemical, conformational, mechanical, and microstructural measures of soft materials
,”
Rev. Sci. Instrum.
87
,
105105
(
2016
).
31.
Migler
,
K. B.
,
A. P.
Kotula
, and
A. R.
Hight Walker
, “
Trans-rich structures in early stage crystallization of polyethylene
,”
Macromolecules
48
,
4555
4561
(
2015
).
32.
Kotula
,
A. P.
,
C. R.
Snyder
, and
K. B.
Migler
, “
Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy
,”
Polymer
117
,
1
10
(
2017
).
33.
Roy
,
D.
,
A. P.
Kotula
,
B.
Natarajan
,
J. W.
Gilman
,
D. M.
Fox
, and
K. B.
Migler
, “
Effect of cellulose nanocrystals on crystallization kinetics of polycaprolactone as probed by rheo-Raman
,”
Polymer
153
,
70
77
(
2018
).
34.
Bulletin
,
P. S.
,
Handbook of Means and Their Inequalities
(
Kluwer Academic Publishers
,
The Netherlands
,
2003
), Vol. 560.
35.
Chambon
,
F.
, and
H. H.
Winter
, “
Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry
,”
J. Rheol.
31
,
683
697
(
1987
).
36.
Izuka
,
A.
,
H. H.
Winter
, and
T.
Hashimoto
, “
Molecular weight dependence of viscoelasticity of polycaprolactone critical gels
,”
Macromolecules
25
,
2422
2428
(
1992
).
37.
Lebedev
,
B.
, and
A.
Yevstropov
, “
Thermodynamic properties of polylactones
,”
Makromol. Chem.
185
,
1235
1253
(
1984
).
38.
Lorenzo
,
A. T.
, and
A. J.
Müller
, “
Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier
,”
J. Polym. Sci. Part B
46
,
1478
1487
(
2008
).
39.
Lawton
,
W. H.
, and
E. A.
Sylvestre
, “
Self modeling curve resolution
,”
Technometrics
13
,
617
633
(
1971
).
40.
Noroozi
,
N.
,
J. A.
Thomson
,
N.
Noroozi
,
L. L.
Schafer
, and
S. G.
Hatzikiriakos
, “
Viscoelastic behaviour and flow instabilities of biodegradable poly (ɛ-caprolactone) polyesters
,”
Rheol. Acta
51
,
179
192
(
2012
).
41.
Kelly
,
C. A.
,
S. H.
Murphy
,
G. A.
Leeke
,
S. M.
Howdle
,
K. M.
Shakesheff
, and
M. J.
Jenkins
, “
Rheological studies of polycaprolactone in supercritical CO2
,”
Eur. Polym. J.
49
,
464
470
(
2013
).
42.
Sangroniz
,
L.
,
F.
Barbieri
,
D.
Cavallo
,
A.
Santamaria
,
R. G.
Alamo
, and
A. J.
Müller
, “
Rheology of self-nucleated poly(ɛ-caprolactone) melts
,”
Eur. Polym. J.
99
,
495
503
(
2018
).
43.
Denn
,
M. M.
, and
J. F.
Morris
, “
Rheology of non-Brownian suspensions
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
203
228
(
2014
).
44.
Wildemuth
,
C. R.
, and
M. C.
Williams
, “
Viscosity of suspensions modeled with a shear-dependent maximum packing fraction
,”
Rheol. Acta
23
,
627
635
(
1984
).
45.
Roberts
,
A. P.
, and
E. J.
Garboczi
, “
Elastic properties of model porous ceramics
,”
J. Am. Ceram. Soc.
83
,
3041
3048
(
2000
).
46.
Ji
,
S.
,
Q.
Gu
, and
B.
Xia
, “
Porosity dependence of mechanical properties of solid materials
,”
J. Mater. Sci.
41
,
1757
1768
(
2006
).
47.
Gibiansky
,
L. V.
, and
R.
Lakes
, “
Bounds on the complex bulk modulus of a two-phase viscoelastic composite with arbitrary volume fractions of the components
,”
Mech. Mater.
16
,
317
331
(
1993
).
48.
Milton
,
G. W.
, and
J. G.
Berryman
, “
On the effective viscoelastic moduli of two–phase media. II. Rigorous bounds on the complex shear modulus in three dimensions
,”
Proc. R. Soc. Lond. A
453
,
1849
1880
(
1997
).
49.
Holly
,
E. E.
,
S. K.
Venkataraman
,
F.
Chambon
, and
H.
Henning Winter
, “
Fourier transform mechanical spectroscopy of viscoelastic materials with transient structure
,”
J. Nonnewton. Fluid Mech.
27
,
17
26
(
1988
).
50.
Rintoul
,
M. D.
, and
S.
Torquato
, “
Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model
,”
J. Phys. A Math. Gen.
30
,
L585
L592
(
1997
).
51.
Bicerano
,
J.
,
J. F.
Douglas
, and
D. A.
Brune
, “
Model for the viscosity of particle dispersions
,”
J. Macromol. Sci. Part C
39
,
561
642
(
1999
).
52.
Lorenz
,
B.
,
I.
Orgzall
, and
H. O.
Heuer
, “
Universality and cluster structures in continuum models of percolation with two different radius distributions
,”
J. Phys. A Math. Gen.
26
,
4711
4722
(
1993
).
53.
Ramazani SA
,
A.
,
A.
Ait-Kadi
, and
M.
Grmela
, “
Rheology of fiber suspensions in viscoelastic media: Experiments and model predictions
,”
J. Rheol.
45
,
945
962
(
2001
).
54.
Laun
,
H.
, “
Orientation effects and rheology of short glass fiber-reinforced thermoplastics
,”
Colloid Polym. Sci.
262
,
257
269
(
1984
).
55.
Metzner
,
A. B.
, “
Rheology of suspensions in polymeric liquids
,”
J. Rheol.
29
,
739
775
(
1985
).
56.
Reuss
,
A.
, “
Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle
,”
Z. Angew. Math. Mech.
9
,
49
58
(
1929
).
57.
Mehta
,
A.
, and
B.
Wunderlich
, “
A study of molecular fractionation during the crystallization of polymers
,”
Colloid Polym. Sci.
253
,
193
205
(
1975
).
58.
Akpalu
,
Y.
,
L.
Kielhorn
,
B. S.
Hsiao
,
R. S.
Stein
,
T. P.
Russell
,
J.
van Egmond
, and
M.
Muthukumar
, “
Structure development during crystallization of homogeneous copolymers of ethene and 1-octene:  Time-resolved synchrotron X-ray and SALS measurements
,”
Macromolecules
32
,
765
770
(
1999
).
59.
Kolb
,
R.
,
C.
Wutz
,
N.
Stribeck
,
G.
von Krosigk
, and
C.
Riekel
, “
Investigation of secondary crystallization of polymers by means of microbeam X-ray scattering
,”
Polymer
42
,
5257
5266
(
2001
).
60.
Chynoweth
,
K. R.
, and
Z. H.
Stachurski
, “
Crystallization of poly(ɛ-caprolactone)
,”
Polymer
27
,
1912
1916
(
1986
).
61.
See the supplementary material at https://doi.org/10.1122/1.5132407 for further information on the activation energy calculation from melt rheology and the thermal equilibration timescale measurements of poly(phenylmethylsiloxane).

Supplementary Material

You do not currently have access to this content.