Restricted sliding or rotational motion of colloidal particles plays a key role in the emergence of discontinuous shear thickening (DST). From viscometric functions to the number of contacting neighbors under an applied deformation, a hindrance to sliding motion significantly changes the behavior of dense suspensions on all scales. In this work, implicitly by using a modified hydrodynamic model based on Stokesian dynamics and explicitly by solving for the hydrodynamics of nonsmooth colloids, we show that lubrication forces that arise from surface asperities effectively provide such constraints to tangential particle motion. A transition from continuous shear thickening to DST is observed as the surface roughness of the particles is systematically increased. In this hydrodynamic model for DST, normal stress differences remain negative in the shear-thickened state (STS). Study of the spatial stress distribution indicates the onset of DST to be a highly localized event; however, particle self-diffusivity and the microstructural network suggest a rather uniform structure in the STS.

1.
Brady
,
J. F.
, and
G.
Bossis
, “
The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation
,”
J. Fluid Mech.
155
,
105
129
(
2006
).
2.
Mewis
,
J.
, and
N. J.
Wagner
,
Collodail Suspension Rheology. Cambridge Series in Chemical Engineering
(
Cambridge University
,
New York
,
2012
).
3.
Brown
,
E.
, and
H. M.
Jaeger
, “
Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming
,”
Rep. Prog. Phys.
77
(
4
),
046602
(
2014
).
4.
Morris
,
J. F.
, “
A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow
,”
Rheol. Acta
48
,
909
923
(
2009
).
5.
Barnes
,
H. A.
, “
Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids
,”
J. Rheol.
33
(
2
),
329
366
(
1989
).
6.
Hoffman
,
R. L.
, “
Explanations for the cause of shear thickening in concentrated colloidal suspensions
,”
J. Rheol.
42
(
1
),
111
123
(
1998
).
7.
Hoffman
,
R. L.
, “
Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability
,”
Trans. Soc. Rheol.
16
(
1
),
155
173
(
1972
).
8.
Metzner
,
A. B.
, and
M.
Whitlock
, “
Flow behavior of concentrated (dilatant) suspensions
,”
Trans. Soc. Rheol.
2
(
1
),
239
254
(
1958
).
9.
Laun
,
H. M.
, “
Normal stresses in extremely shear thickening polymer dispersions
,”
J. Non-Newton. Fluid Mech.
54
(
0
),
87
108
(
1994
).
10.
Aral
,
B. K.
, and
D. M.
Kalyon
, “
Viscoelastic material functions of noncolloidal suspensions with spherical particles
,”
J. Rheol.
41
(
3
),
599
620
(
1997
).
11.
Lee
,
M.
,
M.
Alcoutlabi
,
J. J.
Magda
,
C.
Dibble
,
M. J.
Solomon
,
X.
Shi
, and
G. B.
McKenna
, “
The effect of the shear-thickening transition of model colloidal spheres on the sign of N1 and on the radial pressure profile in torsional shear flows
,”
J. Rheol.
50
(
3
),
293
311
(
2006
).
12.
Cwalina
,
C. D.
, and
N. J.
Wagner
, “
Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions
,”
J. Rheol.
58
(
4
),
949
967
(
2014
).
13.
Hsiao
,
L. C.
,
S.
Jamali
,
E.
Glynos
,
P. F.
Green
,
R. G.
Larson
, and
M. J.
Solomon
, “
Rheological state diagrams for rough colloids in shear flow
,”
Phys. Rev. Lett.
119
(
15
),
158001
(
2017
).
14.
Madraki
,
Y.
,
G.
Ovarlez
, and
S.
Hormozi
, “
Transition from continuous to discontinuous shear thickening: An excluded-volume effect
,”
Phys. Rev. Lett.
121
(
10
),
108001
(
2018
).
15.
Pan
,
Z.
,
H.
de Cagny
,
M.
Habibi
, and
D.
Bonn
, “
Normal stresses in shear thickening granular suspensions
,”
Soft Matter
13
(
20
),
3734
3740
(
2017
).
16.
Royer
,
J. R.
,
D. L.
Blair
, and
S. D.
Hudson
, “
Rheological signature of frictional interactions in shear thickening suspensions
,”
Phys. Rev. Lett.
116
(
18
),
188301
(
2016
).
17.
Gamonpilas
,
C.
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear and normal stress measurements in non-Brownian monodisperse and bidisperse suspensions
,”
J. Rheol.
60
(
2
),
289
296
(
2016
).
18.
Bossis
,
G.
, and
J. F.
Brady
, “
Dynamic simulation of sheared suspensions. I. General method
,”
J. Chem. Phys.
80
,
5141
5154
(
1984
).
19.
Bossis
,
G.
, and
J. F.
Brady
, “
The rheology of Brownian suspensions
,”
J. Chem. Phys.
91
,
1866
1874
(
1989
).
20.
Ball
,
R. C.
, and
J. R.
Melrose
, “
Lubrication breakdown in hydrodynamic simulations of concentrated colloids
,”
Adv. Colloid Interface Sci.
59
(
0
),
19
30
(
1995
).
21.
Melrose
,
J. R.
, and
R. C.
Ball
, “
The pathological behaviour of sheared hard spheres with hydrodynamic interactions
,”
Europhys. Lett.
32
(
6
),
535
540
(
1995
).
22.
Silbert
,
L. E.
,
J. R.
Melrose
, and
R. C.
Ball
, “
Colloidal microdynamics: Pair-drag simulations of model-concentrated aggregated systems
,”
Phys. Rev. E
56
(
6
),
7067
(
1997
).
23.
Foss
,
D. R.
, and
J. F.
Brady
, “
Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation
,”
J. Fluid Mech.
407
,
167
200
(
2000
).
24.
D’Haene
,
P.
,
J.
Mewis
, and
G. G.
Fuller
, “
Scattering dichroism measurements of flow-induced structure of a shear thickening suspension
,”
J. Colloid Interface Sci.
156
(
2
),
350
358
(
1993
).
25.
Bender
,
J.
, and
N. J.
Wagner
, “
Reversible shear thickening in monodisperse and bidisperse colloidal dispersions
,”
J. Rheol.
40
(
5
),
899
916
(
1996
).
26.
Melrose
,
J. R.
, and
R. C.
Ball
, “
Continuous shear thickening transitions in model concentrated colloids—The role of interparticle forces
,”
J. Rheol.
48
(
5
),
937
960
(
2004
).
27.
Jamali
,
S.
,
M.
Yamanoi
, and
J.
Maia
, “
Bridging the gap between microstructure and macroscopic behavior of monodisperse and bimodal colloidal suspensions
,”
Soft Matter
9
(
5
),
1506
1515
(
2013
).
28.
Jamali
,
S.
, and
A.
Boromand
, “
Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions
,”
J. Rheol.
59
(
6
),
1377
1395
(
2015
).
29.
Kim
,
S.
, and
S. J.
Karrila
,
Microhydrodynamics Principles and Selected Applications
(
Dover
,
Mineola
,
New York
,
1991
).
30.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
,”
J. Rheol.
58
(
6
),
1693
1724
(
2014
).
31.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening in Brownian suspensions by dynamic simulation
,”
Proc. Natl. Acad. Sci. U.S.A.
112
(
50
),
15326
(
2015
).
32.
Morris
,
J. F.
, “
Lubricated-to-frictional shear thickening scenario in dense suspensions
,”
Phys. Rev. Fluids
3
(
11
),
110508
(
2018
).
33.
Seto
,
R.
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
(
21
),
218301
(
2013
).
34.
Wyart
,
M.
, and
M. E.
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
112
(
9
),
098302
(
2014
).
35.
Fernandez
,
N.
,
R.
Mani
,
D.
Rinaldi
,
D.
Kadau
,
M.
Mosquet
,
H.
Lombois-Burger
,
J.
Cayer-Barrioz
,
H. J.
Herrmann
,
N. D.
Spencer
, and
L.
Isa
, “
Microscopic mechanism for shear thickening of non-Brownian suspensions
,”
Phys. Rev. Lett.
111
(
10
),
108301
(
2013
).
36.
Hsu
,
C.-P.
,
S. N.
Ramakrishna
,
M.
Zanini
,
N. D.
Spencer
, and
L.
Isa
, “
Roughness-dependent tribology effects on discontinuous shear thickening
,”
Proc. Natl. Acad. Sci. U.S.A.
115
(
20
),
5117
5122
(
2018
).
37.
Schroyen
,
B.
,
B.
Schroyen
,
C.-P.
Hsu
,
L.
Isa
,
P. V.
Puyvelde
, and
J.
Vermant
, “
Stress contributions in colloidal suspensions: The smooth, the rough, and the hairy
,”
Phys. Rev. Lett.
122
(
21
),
218001
(
2019
).
38.
Hsiao
,
L. C.
,
I.
Saha-Dalal
,
R. G.
Larson
and
M. J.
Solomon
, “
Translational and rotational dynamics in dense suspensions of smooth and rough colloids
,”
Soft Matter
13
(
48
),
9229
9236
(
2017
).
39.
Jamali
,
S.
, and
J. F.
Brady
, “
Alternative frictional model for discontinuous shear thickening of dense suspensions: Hydrodynamics
,”
Phys. Rev. Lett.
123
(
13
),
138002
(
2019
).
40.
Brady
,
J. F.
, and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
(
1
),
111
157
(
1988
).
41.
Wang
,
M.
, and
J. F.
Brady
, “
Short-time transport properties of bidisperse suspensions and porous media: A Stokesian dynamics study
,”
J. Chem. Phys.
142
(
9
),
094901
(
2015
).
42.
Swan
,
J. W.
, and
J. F.
Brady
, “
The hydrodynamics of confined dispersions
,”
J. Fluid Mech.
687
,
254
299
(
2011
).
43.
Wang
,
M.
, and
J. F.
Brady
, “
Spectral Ewald acceleration of Stokesian dynamics for polydisperse suspensions
,”
J. Comput. Phys.
306
,
443
477
(
2016
).
44.
Rycroft
,
C. H.
, “
Voro++: A three-dimensional Voronoi cell library in C++
,”
Chaos
19
(
4
),
041111
(
2009
).
45.
Guy
,
B. M.
,
J. A.
Richards
,
D. J. M.
Hodgson
,
E.
Blanco
, and
W. C. K.
Poon
, “
Constraint-based approach to granular dispersion rheology
,”
Phys. Rev. Lett.
121
(
12
),
128001
(
2018
).
46.
Lin
,
N. Y. C.
,
B. M.
Guy
,
M.
Hermes
,
C.
Ness
,
J.
Sun
,
W. C. K.
Poon
, and
I.
Cohen
, “
Hydrodynamic and contact contributions to continuous shear thickening of colloids suspension
,”
Phys. Rev. Lett.
115
,
228304
(
2015
).
47.
Lin
,
N. Y. C.
,
C.
Ness
,
M. E.
Cates
,
J.
Sun
, and
I.
Cohen
, “
Tunable shear thickening in suspensions
,”
PNAS
113
(
39
),
10774
10778
(
2016
).
48.
Groot
,
R. D.
, and
P. B.
Warren
, “
Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation
,”
J. Chem. Phys.
107
(
11
),
4423
4435
(
1997
).
49.
Espanol
,
P.
, and
P.
Warren
, “
Statistical mechanics of dissipative particle dynamics
,”
Europhys. Lett.
30
(
4
),
191
196
(
1995
).
50.
Boromand
,
A.
,
S.
Jamali
,
B.
Grove
, and
J. M.
Maia
, “
A generalized frictional and hydrodynamic model of the dynamics and structure of dense colloidal suspensions
,”
J. Rheol.
62
(
4
),
905
918
(
2018
).
51.
Boromand
,
A.
,
S.
Jamali
, and
J. M.
Maia
, “
Viscosity measurement techniques in dissipative particle dynamics
,”
Comput. Phys. Commun.
196
,
149
160
(
2015
).
52.
Boromand
,
A.
,
S.
Jamali
, and
J. M.
Maia
, “
Structural fingerprints of yielding mechanisms in attractive colloidal gels
,”
Soft Matter
13
(
2
),
458
473
(
2017
).
53.
Jamali
,
S.
,
A.
Boromand
,
S.
Khani
, and
J.
Maia
, “
Gaussian-inspired auxiliary non-equilibrium thermostat (GIANT) for dissipative particle dynamics simulations
,”
Comput. Phys. Commun.
197
,
27
34
(
2015
).
54.
Jamali
,
S.
,
G. H.
McKinley
, and
R. C.
Armstrong
, “
Microstructural rearrangements and their rheological implications in a model thixotropic elastoviscoplastic fluid
,”
Phys. Rev. Lett.
118
(
4
),
048003
(
2017
).
55.
Irving
,
J. H.
, and
J. G.
Kirkwood
, “
The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics
,”
J. Chem. Phys.
18
(
6
),
817
829
(
1950
).
56.
Kirkwood
,
J. G.
, and
F. P.
Buff
, “
The statistical mechanical theory of surface tension
,”
J. Chem. Phys.
17
(
3
),
338
343
(
1949
).
You do not currently have access to this content.