Rheological experiments on model and industrial colloidal dispersions that exhibit reversible shear thickening are compared to a recent model that correlates simulation results for the shear rheology of bidisperse suspensions of particles with varying levels of contact friction. Comparisons are presented with rheological results for a variety of colloidal dispersions varying from model systems to industrially relevant, commercial dispersions where both shear and first normal stress differences are available. Particle-scale measurements of particle friction coefficients are provided through a survey of the literature. The comparisons show under which conditions the model can quantitatively describe the measured rheology and how the model can be used to correlate data for systems with more complex interactions when allowances are made for effective volume fractions and adjustments in friction coefficients. Discrepancies evident in comparisons for the first normal stress differences highlight the importance of enhanced hydrodynamic friction in many systems, especially for continuous shear thickening, in qualitative agreement with recent simulations that incorporate enhanced lubrication hydrodynamics due to elastohydrodynamics or particle roughness. Finally, a literature survey of measurements of jamming volume fractions and particle friction coefficients indicates that the model overestimates the experimentally observed jamming volume fraction. The comparisons presented in this work provide quantitative information valuable for those modeling suspension processing as well as suggestions for further model improvement.

1.
Wagner
,
N. J.
, and
J. F.
Brady
, “
Shear thickening in colloidal dispersions
,”
Phys. Today
62
,
27
32
(
2009
).
2.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal suspension rheology
, in
Cambridge Series in Chemical Engineering
(
Cambridge University
,
Cambridge
,
2012
).
3.
Barnes
,
H. A.
, “
Shear-thickening (dilatancy) in suspensions of nonaggregating solid particles dispersed in newtonian liquids
,”
J. Rheol.
33
,
329
366
(
1989
).
4.
Cwalina
,
C. D.
,
R. D.
Dombrowski
,
C. J.
McCutcheon
,
E. L.
Christiansen
, and
N. J.
Wagner
, MMOD puncture resistance of EVA suits with shear thickening fluid (STF)—armor (TM) absorber layers,
Procedia Engineering
103
,
97
104
(
2015
).
5.
Lee
,
Y. S.
,
E. D.
Wetzel
, and
N. J.
Wagner
, “
The ballistic impact characteristics of Kevlar (R) woven fabrics impregnated with a colloidal shear thickening fluid
,”
J. Mater. Sci.
38
,
2825
2833
(
2003
).
6.
Decker
,
M. J.
,
C. J.
Halbach
,
C. H.
Nam
,
N. J.
Wagner
, and
E. D.
Wetzel
, “
Stab resistance of shear thickening fluid (STF)-treated fabrics
,”
Compos. Sci. Technol.
67
,
565
578
(
2007
).
7.
Brown
,
E.
,
N. A.
Forman
,
C. S.
Orellana
,
H. J.
Zhang
,
B. W.
Maynor
,
D. E.
Betts
,
J. M.
DeSimone
, and
H. M.
Jaeger
, “
Generality of shear thickening in dense suspensions
,”
Nat. Mater.
9
,
220
224
(
2010
).
8.
Brown
,
E.
, and
H. M.
Jaeger
, “
The role of dilation and confining stresses in shear thickening of dense suspensions
,”
J. Rheol.
56
,
875
923
(
2012
).
9.
Metzner
,
A. B.
, and
M.
Whitlock
, “
Flow behavior of concentrated (dilatant) suspensions
,”
Trans. Soc. Rheol.
2
,
239
253
(
1958
).
10.
Reynolds
,
O.
, “
On the dilatancy of media composed of rigid particles in contact, with experimental illustrations
,”
Philos. Mag. Ser.
5
(
20
),
469
481
(
1885
).
11.
Brown
,
E.
, and
H. M.
Jaeger
, “
Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming
,”
Rep. Prog. Phys.
77
,
046602
(
2014
).
12.
Morris
,
J. F.
, “
Shear thickening of concentrated suspensions: Recent developments and relation to other phenomena
,”
Annu. Rev. Fluid Mech.
52
,
121
144
(
2020
).
13.
Brady
,
J. F.
, and
G.
Bossis
, “
The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation
,”
J. Fluid Mech.
155
,
105
129
(
1985
).
14.
Brady
,
J. F.
, and
J. F.
Morris
, “
Microstructure of strongly sheared suspensions and its impact on rheology and diffusion
,”
J. Fluid Mech.
348
,
103
139
(
1997
).
15.
Bergenholtz
,
J.
,
J. F.
Brady
, and
M.
Vicic
, “
The non-Newtonian rheology of dilute colloidal suspensions
,”
J. Fluid Mech.
456
,
239
275
(
2002
).
16.
Jamali
,
S.
, and
J. F.
Brady
, “
Alternative frictional model for discontinuous shear thickening of dense suspensions: Hydrodynamics
,”
Phys. Rev. Lett.
123
,
138002
(
2019
).
17.
Jamali
,
S.
,
A.
Boromand
,
N.
Wagner
, and
J.
Maia
, “
Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions
,”
J. Rheol.
59
,
1377
1395
(
2015
).
18.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening in Brownian suspensions by dynamic simulation
,”
Proc. Natl. Acad. Sci. U.S.A.
112
,
15326
15330
(
2015
).
19.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
,”
J. Rheol.
58
,
1693
1724
(
2014
).
20.
Seto
,
R.
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
,
218301
(
2013
).
21.
Townsend
,
A. K.
, and
H. J.
Wilson
, “
Frictional shear thickening in suspensions: The effect of rigid asperities
,”
Phys. Fluids
29
,
121607
(
2017
).
22.
Boromand
,
A.
,
S.
Jamali
,
B.
Grove
, and
J. M.
Maia
, “
A generalized frictional and hydrodynamic model of the dynamics and structure of dense colloidal suspensions
,”
J. Rheol.
62
,
905
918
(
2018
).
23.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions
,”
J. Rheol.
45
,
1205
1222
(
2001
).
24.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
The effects of particle-size on reversible shear thickening of concentrated colloidal dispersions
,”
J. Chem. Phys.
114
,
10514
10527
(
2001
).
25.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition
,”
J. Chem. Phys.
117
,
10291
10302
(
2002
).
26.
Foss
,
D. R.
, and
J. F.
Brady
, “
Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation
,”
J. Fluid Mech.
407
,
167
200
(
2000
).
27.
Brady
,
J. F.
, and
G.
Bossis
, “
Stokesian dynamics
,”
Ann. Rev. Fluid Mech.
20
,
111
157
(
1988
).
28.
Batchelor
,
G. K.
, and
J. T.
Green
, “
The determination of the bulk stress in a suspension of spherical particles to order c²
,”
J. Fluid Mech.
56
,
401
427
(
1972
).
29.
Batchelor
,
G. K.
, and
J. T.
Green
, “
The hydrodynamic interaction of two small freely-moving spheres in a linear flow field
,”
J. Fluid Mech.
56
,
375
400
(
1972
).
30.
Bender
,
J. W.
, and
N. J.
Wagner
, “
Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions
,”
J. Colloid Interface Sci.
172
,
171
184
(
1995
).
31.
Dhaene
,
P.
,
J.
Mewis
, and
G. G.
Fuller
, “
Scattering dichroism measurements of flow-induced structure of a shear thickening suspension
,”
J. Colloid Interface Sci.
156
,
350
358
(
1993
).
32.
Kalman
,
D. P.
, and
N. J.
Wagner
, “
Microstructure of shear-thickening concentrated suspensions determined by flow-USANS
,”
Rheol. Acta
48
,
897
908
(
2009
).
33.
Gurnon
,
A. K.
, and
N. J.
Wagner
, “
Microstructure and rheology relationships for shear thickening colloidal dispersions
,”
J. Fluid Mech.
769
,
242
276
(
2015
).
34.
Cwalina
,
C. D.
, and
N. J.
Wagner
, “
Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions
,”
J. Rheol.
58
,
949
967
(
2014
).
35.
Morris
,
J. F.
, and
F.
Boulay
, “
Curvilinear flows of noncolloidal suspensions: The role of normal stresses
,”
J. Rheol.
43
,
1213
1237
(
1999
).
36.
Torquato
,
S.
,
T. M.
Truskett
, and
P. G.
Debenedetti
, “
Is random close packing of spheres well defined?
,”
Phys. Rev. Lett.
84
,
2064
2067
(
2000
).
37.
Lionberger
,
R. A.
, and
W. B.
Russel
, “
High-frequency modulus of hard-sphere colloids
,”
J. Rheol.
38
,
1885
1908
(
1994
).
38.
Russel
,
W. B.
,
N. J.
Wagner
, and
J.
Mewis
, “
Divergence in the low shear viscosity for Brownian hard-sphere dispersions: At random close packing or the glass transition?
,”
J. Rheol.
57
,
1555
1567
(
2013
).
39.
de Kruif
,
C. G.
,
E. M. F.
van Iersel
,
A.
Vrij
, and
W. B.
Russel
, “
Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction
,”
J. Chem. Phys.
83
,
4717
4725
(
1985
).
40.
Luo
,
Y.
,
Y.-F.
Lee
,
S. C.
Brown
,
K. A.
Dennis
,
E. M.
Furst
, and
N. J.
Wagner
, “
One-step, in-situ jamming point measurements by immobilization cell rheometry
,”
Rheol. Acta
(published online,
2020
).
41.
Wagner
,
N. J.
, and
J. W.
Bender
, “
The role of nanoscale forces in colloid dispersion rheology
,”
MRS Bull.
29
,
100
106
(
2004
).
42.
Wang
,
M.
, and
J. F.
Brady
, “
Constant stress and pressure rheology of colloidal suspensions
,”
Phys. Rev. Lett.
115
,
158301
(
2015
).
43.
Ball
,
R. C.
, and
J. R.
Melrose
, “
Lubrication breakdown in hydrodynamic simulations of concentrated colloids
,”
Adv. Colloid Interface Sci.
59
,
19
30
(
1995
).
44.
Thompson
,
P. A.
, and
G. S.
Grest
, “
Granular flow—Friction and the dilatancy transition
,”
Phys. Rev. Lett.
67
,
1751
1754
(
1991
).
45.
Royer
,
J. R.
,
D. L.
Blair
, and
S. D.
Hudson
, “
Rheological signature of frictional interactions in shear thickening suspensions
,”
Phys. Rev. Lett.
116
,
188301
(
2016
).
46.
Melrose
,
J. R.
, and
R. C.
Ball
, “
The pathological behaviour of sheared hard spheres with hydrodynamic interactions
,”
Europhys. Lett.
32
,
535
540
(
1995
).
47.
Silbert
,
L. E.
,
R. S.
Farr
,
J. R.
Melrose
, and
R. C.
Ball
, “
Stress distributions in flowing aggregated colloidal suspensions
,”
J. Chem. Phys.
111
,
4780
4789
(
1999
).
48.
Wyart
,
M.
, and
M. E.
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
112
,
098302
(
2014
).
49.
Singh
,
A.
,
R.
Mari
,
M. M.
Denn
, and
J. F.
Morris
, “
A constitutive model for simple shear of dense frictional suspensions
,”
J. Rheol.
62
,
457
468
(
2018
).
50.
Guy
,
B. M.
,
M.
Hermes
, and
W. C. K.
Poon
, “
Towards a unified description of the rheology of hard-particle suspensions
,”
Phys. Rev. Lett.
115
,
088304
(
2015
).
51.
James
,
N. M.
,
E.
Han
,
R. A. L.
de la Cruz
,
J.
Jureller
, and
H. M.
Jaeger
, “
Interparticle hydrogen bonding can elicit shear jamming in dense suspensions
,”
Nat. Mater.
17
,
965
970
(
2018
).
52.
James
,
N. M.
,
C. P.
Hsu
,
N. D.
Spencer
,
H. M.
Jaeger
, and
L.
Isa
, “
Tuning interparticle hydrogen bonding in shear-jamming suspensions: Kinetic effects and consequences for tribology and rheology
,”
J. Phys. Chem. Lett.
10
,
1663
1668
(
2019
).
53.
Hsu
,
C. P.
,
S. N.
Ramakrishna
,
M.
Zanini
,
N. D.
Spencer
, and
L.
Isa
, “
Roughness-dependent tribology effects on discontinuous shear thickening
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
5117
5122
(
2018
).
54.
Kalman
,
D. P.
,
Microstructure and Rheology of Concentrated Suspensions of Near Hard-Sphere Colloids
(Ph.D. dissertation, University of Delaware,
2010
).
55.
Negi
,
A. S.
, and
C. O.
Osuji
, “
New insights on fumed colloidal rheology-shear thickening and vorticity-aligned structures in flocculating dispersions
,”
Rheol. Acta
48
,
871
881
(
2009
).
56.
Hsiao
,
L. C.
, and
S.
Pradeep
, “
Experimental synthesis and characterization of rough particles for colloidal and granular rheology
,”
Curr. Opin. Colloid Interface Sci.
43
,
94
112
(
2019
).
57.
Fernandez
,
N.
,
J.
Cayer-Barrioz
,
L.
Isa
, and
N. D.
Spencer
, “
Direct, robust technique for the measurement of friction between microspheres
,”
Langmuir
31
,
8809
8817
(
2015
).
58.
Fernandez
,
N.
,
R.
Mani
,
D.
Rinaldi
,
D.
Kadau
,
M.
Mosquet
,
H.
Lombois-Burger
,
J.
Cayer-Barrioz
,
H. J.
Herrmann
,
N. D.
Spencer
, and
L.
Isa
, “
Microscopic mechanism for shear thickening of non-Brownian suspensions
,”
Phys. Rev. Lett.
111
,
108301
(
2013
).
59.
Raviv
,
U.
,
S.
Giasson
,
N.
Kampf
,
J.-F.
Gohy
,
R.
Jérôme
, and
J.
Klein
, “
Lubrication by charged polymers
,”
Nature
425
,
163
165
(
2003
).
60.
Meeker
,
S. P.
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
Slip and flow in pastes of soft particles: Direct observation and rheology
,”
J. Rheol.
48
,
1295
1320
(
2004
).
61.
Meeker
,
S. P.
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
Slip and flow in soft particle pastes
,”
Phys. Rev. Lett.
92
,
198302
(
2004
).
62.
Israelachvili
,
J. N.
,
Intermolecular and Surface Forces
(3rd ed. (Academic Press, Cambridge, MA,
2015
).
63.
Krishnamurthy
,
L. N.
,
N. J.
Wagner
, and
J.
Mewis
, “
Shear thickening in polymer stabilized colloidal dispersions
,”
J. Rheol.
49
,
1347
1360
(
2005
).
64.
Park
,
N.
,
V.
Rathee
,
D. L.
Blair
, and
J. C.
Conrad
, “
Contact networks enhance shear thickening in attractive colloid-polymer mixtures
,”
Phys. Rev. Lett.
122
,
228003
(
2019
).
65.
Stachowiak
,
G.
, and
A. W.
Batchelor
,
Engineering Tribology
4th ed. (
Butterworth-Heinemann
, Oxford, U.K.
2013
).
66.
Vakarelski
,
I. U.
,
S. C.
Brown
,
Y. I.
Rabinovich
, and
B. M.
Moudgil
, “
Lateral force microscopy investigation of surfactant-mediated lubrication from aqueous solution
,”
Langmuir
20
,
1724
1731
(
2004
).
67.
Tsujii
,
Y.
,
A.
Nomura
,
K.
Okayasu
,
W.
Gao
,
K.
Ohno
, and
T.
Fukuda
, “
AFM studies on microtribology of concentrated polymer brushes in solvents
,”
J. Phys. Conf. Ser.
184
,
012031
(
2009
).
68.
Taran
,
E.
,
B. C.
Donose
,
I. U.
Vakarelski
, and
K.
Higashitani
, “
pH dependence of friction forces between silica surfaces in solutions
,”
J. Colloid Interface Sci.
297
,
199
203
(
2006
).
69.
Bhushan
,
B.
,
K. J.
Kwak
,
S.
Gupta
, and
S. C.
Lee
, “
Nanoscale adhesion, friction and wear studies of biomolecules on silane polymer-coated silica and alumina-based surfaces
,”
J. R. Soc. Interface
6
,
719
733
(
2009
).
You do not currently have access to this content.