A new electrorheological cell for the capillary breakup extensional rheometer (HaakeTM CaBER 1TM, Thermo Scientific) allowing the analysis of the rheological properties of complex fluids under the simultaneous application of an extensional flow and an electric field has been developed and tested. In this study, the add-on is described in full detail and different cornstarch suspensions in olive oil are characterized under different stretching conditions with and without an electric field. The results show that, under extensional flow and no electric field, the sample behaves as a Newtonian-like fluid, showing a linear relationship between time and filament minimum diameter. However, when the external electric field is imposed, the filament thinning process delays increasing the breakup time. If the external electric field is further increased, then the filament may even not break, depending on the imposed voltage, the Hencky strain, and the concentration of particles in the fluid sample.

1.
Parthasarathy
,
M.
, and
D. J.
Klingenberg
, “
Electrorheology: Mechanisms and models
,”
Mater. Sci. Eng. R Rep.
17
,
57
103
(
1996
).
2.
Block
,
H.
, and
J. P.
Kelly
, “
Electro-rheology
,”
J. Phys. D Appl. Phys.
21
,
1661
1677
(
1988
).
3.
Hao
,
T.
, “
Electrorheological fluids
,”
Adv. Mater.
13
,
1847
1857
(
2001
).
4.
Richtering
,
W.
, Polymer-based electrorheological fluids, in Encyclopedia of Materials: Science and Technology, edited by K. Buschow, R. Cahn, M. Flemings, B. Ilschner, E. Kramer, S. Mahajan, and P. Veyssiere (Elsevier, Oxford, 2001), pp. 7550–7551.
5.
Coulter
,
J. P.
,
K. D.
Weiss
, and
J. D.
Carlson
, “
Engineering applications of electrorheological materials
,”
J. Intell. Mater. Syst. Struct.
4
,
248
259
(
1993
).
6.
Furusho
,
J.
,
M.
Sakaguchi
,
N.
Takesue
, and
K.
Koyanagi
, “
Development of ER brake and its application to passive force display
,”
J. Intell. Mater. Syst. Struct.
13
,
425
429
(
2002
).
7.
Bose
,
H.
,
M.
Baumann
,
G. J.
Monkman
,
S.
Egersdorfer
,
A.
Tunayar
,
H.
Freimuth
,
H.
Ermert
, and
W.
Khaled
, “
A new ER fluid based haptic actuator system for virtual reality
,”
Int. J. Mod. Phys. B
19
,
1628
1634
(
2005
).
8.
Wang
,
L.
,
X.
Gong
, and
W.
Wen
, Electrorheological fluid and its applications in microfluidics, in Microfluidics: Technologies and Applications, edited by B. Lin (Springer, Berlin, 2011), pp. 91–115.
9.
Madeja
,
J.
,
Z.
Kesy
, and
A.
Kesy
, “
Application of electrorheological fluid in a hydrodynamic clutch
,”
Smart Mater. Struct.
20
,
105005
(
2011
).
10.
Galindo-Rosales
,
F. J.
, “
Complex fluids in energy dissipating systems
,”
Appl. Sci.
6
,
206
(
2016
).
11.
Gast
,
A. P.
, and
C. F.
Zukoski
, “
Electrorheological fluids as colloidal suspensions
,”
Adv. Colloid Interface Sci.
30
,
153
202
(
1989
).
12.
Halsey
,
T. C.
, and
W.
Toor
, “
Structure of electrorheological fluids
,”
Phys. Rev. Lett.
65
,
2820
2823
(
1990
).
13.
Sheng
,
P.
, and
W.
Wen
, “
Electrorheological fluids: Mechanisms, dynamics, and microfluidics applications
,”
Annu. Rev. Fluid Mech.
44
,
143
174
(
2012
).
14.
Winslow
,
W. M.
, “
Induced fibration of suspensions
,”
J. Appl. Phys.
20
,
1137
1140
(
1949
).
15.
Macosko
,
C. W.
,
Rheology: Principles, Measurements, and Applications
(
Wiley-VCH
,
New York
,
1994
).
16.
Morrison
,
F. A.
,
Understanding Rheology
(
Oxford University
,
New York
,
2001
).
17.
Tian
,
Y.
,
Y.
Meng
,
H.
Mao
, and
S.
Wen
, “
Electrorheological fluid under elongation, compression, and shearing
,”
Phys. Rev. E
65
,
031507
(
2002
).
18.
Stanway
,
R.
,
J.
Sproston
,
M.
Prendergast
,
J.
Case
, and
C.
Wilne
, “
ER fluids in the squeeze-flow mode: An application to vibration isolation
,”
J. Electrostat.
28
,
89
94
(
1992
).
19.
Engmann
,
J.
,
C.
Servais
, and
A. S.
Burbidge
, “
Squeeze flow theory and applications to rheometry: A review
,”
J. Nonnewton. Fluid Mech.
132
,
1
27
(
2005
).
20.
Haward
,
S. J.
,
A.
Jaishankar
,
M. S. N.
Oliveira
,
M. A.
Alves
, and
G. H.
McKinley
, “
Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot device
,”
Biomicrofluidics
7
,
044108
(
2013
).
21.
Galindo-Rosales
,
F. J.
,
M. A.
Alves
, and
M. S. N.
Oliveira
, “
Microdevices for extensional rheometry of slow viscosity elastic liquids: A review
,”
Microfluidics Nanofluidics
14
,
1
19
(
2013
).
22.
Galindo-Rosales
,
F. J.
,
M. S. N.
Oliveira
, and
M. A.
Alves
, “
Optimized cross-slot microdevices for homogeneous extension
,”
RSC Adv.
4
,
7799
7804
(
2014
).
23.
Galindo-Rosales
,
F. J.
, Complex fluids and rheometry in microfluidics, in Complex Fluid-Flows in Microfluidics, edited by F. J. Galindo-Rosales (Springer, Cham, 2018), pp. 1–23.
24.
Galindo-Rosales
,
F. J.
,
J. P.
Segovia-Gutiérrez
,
F. T.
Pinho
,
M. A.
Alves
, and
J.
de Vicente
, “
Extensional rheometry of magnetic dispersions
,”
J. Rheol.
59
,
193
209
(
2015
).
25.
Sadek
,
S.
,
H.
Najafabadi
,
L.
Campo-Deaño
, and
F.
Galindo-Rosales
, Extensional magneto-rheological fixture (exmrfx), Patent No. 20191000020360 COD 0198 (2019).
26.
Sadek
,
S.
,
H.
Najafabadi
,
L.
Campo-Deaño
, and
F.
Galindo-Rosales
, Extensional electro-rheological fixture (exerf), Patent No. 20191000021255 COD 0198 (2019).
27.
Anna
,
S. L.
,
G. H.
McKinley
,
D. A.
Nguyen
,
T.
Sridhar
,
S.
Muller
,
J.
Huang
, and
D. F.
James
, “
An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids
,”
J. Rheol.
45
,
83
114
(
2001
).
28.
Braithwait
,
G. J. C.
,
S. H.
Spiegelberg
, and
G. H.
McKinley
, Apparatus and methods for measuring extensional rheological properties of a material, US patent US006711941B2 (2002).
29.
McKinley
,
G. H.
, Visco-elasto-capillary thinning and break-up of complex fluids, in Rheology Reviews 2005 (The British Society of Rheology, Aberystwyth, 2005).
30.
Bischoff White
,
E. E.
,
M.
Chellamuthu
, and
J. P.
Rothstein
, “
Extensional rheology of a shear-thickening cornstarch and water suspension
,”
Rheol. Acta
49
,
119
129
(
2010
).
31.
Niedzwiedz
,
K.
,
O.
Arnolds
,
N.
Willembacher
, and
R.
Brummer
, “
How to characterize yield stress fluids with capillary breakup extensional rheometry (CaBER)?
,”
Appl. Rheol.
19
,
41969
(
2009
).
32.
Galindo-Rosales
,
F. J.
,
P.
Moldenaers
, and
J.
Vermant
, “
Assessment of the dispersion quality in polymer nanocomposites by rheological methods
,”
Macromol. Mater. Eng.
296
,
331
340
(
2011
).
33.
Ewoldt
,
R. H.
,
M. T.
Johnston
, and
L. M.
Caretta
, Experimental challenges of shear rheology: How to avoid bad data, in Complex Fluids in Biological Systems: Experiment, Theory, and Computation, edited by S. E. Spagnolie (Springer, New York, 2015), pp. 207–241.
34.
Campo-Deaño
,
L.
, and
C.
Clasen
, “
The slow retraction method (SRM) for the determination of ultra-short relaxation times in capillary breakup extensional rheometry experiments
,”
J. Nonnewton. Fluid Mech.
165
,
1688
1699
(
2010
).
35.
Yao
,
M.
, and
G. H.
McKinley
, “
Numerical simulation of extensional deformations of viscoelastic liquid bridges in filament stretching devices
,”
J. Nonnewton. Fluid Mech.
74
,
47
88
(
1998
).
36.
Sousa
,
P.
,
E.
Vega
,
R.
Sousa
,
J.
Montanero
, and
M.
Alves
, “
Measurement of relaxation times in extensional flow of weakly viscoelastic polymer solutions
,”
Rheol. Acta
56
,
11
20
(
2017
).
37.
Najafabadi
,
H. H.
,
S. H.
Sadek
,
L.
Campo-Deano
, and
F. J.
Galindo-Rosales
, Time effect in extensional electrorheological characterization, in Proceedings of the Iberian Meeting on Rheology (IBEREO 2019), edited by F. J. Galindo-Rosales, L. Campo-Deaño, A. M. Afonso, M. A. Alves, and F. T. Pinho (Springer, Cham, 2020), pp. 152–156.
38.
Davis
,
L. C.
, and
J. M.
Ginder
, Electrostatic forces in electrorheological fluids, in Progress in Electrorheology: Science and Technology of Electrorheological Materials, edited by K. O. Havelka and F. E. Filisko (Springer, Boston, 1995), pp. 107–114.
39.
Mezger
,
T. G.
,
The Rheology Handbook: For User of Rotational and Oscillatory Rheometers
(
Vincentz
,
Alemania
,
2002
).
40.
Dinkgreve
,
M.
,
J.
Paredes
,
M. M.
Denn
, and
D.
Bonn
, “
On different ways of measuring “the” yield stress
,”
J. Nonnewton. Fluid Mech.
238
,
233
241
(
2016
).
41.
Dinkgreve
,
M.
,
M. M.
Denn
, and
D.
Bonn
, “
“Everything flows?”: Elastic effects on startup flows of yield-stress fluids
,”
Rheol. Acta
56
,
189
194
(
2017
).
42.
Bonn
,
D.
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
035005
(
2017
).
43.
Klingenberg
,
D. J.
,
F.
van Swol
, and
C. F.
Zukoski
, “
The small shear rate response of electrorheological suspensions. I. Simulation in the point–dipole limit
,”
J. Chem. Phys.
94
,
6160
6169
(
1991
).
44.
Klingenberg
,
D. J.
, and
C. F.
Zukoski
, “
Studies on the steady-shear behavior of electrorheological suspensions
,”
Langmuir
6
,
15
24
(
1990
).
45.
Conrad
,
H.
,
Y.
Li
, and
Y.
Chen
, “
The temperature dependence of the electrorheology and related electrical properties of corn starch/corn oil suspensions
,”
J. Rheol.
39
,
1041
1057
(
1995
).
46.
Bonnecaze
,
R. T.
, and
J. F.
Brady
, “
Yield stresses in electrorheological fluids
,”
J. Rheol.
36
,
73
115
(
1992
).
47.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University
,
Cambridge
,
2011
).
48.
Niedzwiedz
,
K.
,
H.
Buggisch
, and
N.
Willembacher
, “
Extensional rheology of concentrated emulsions as probed by capillary breakup elongational rheometry (CaBER)
,”
Rheol. Acta
49
,
1103
1116
(
2010
).
49.
Martinie
,
L.
,
H.
Buggisch
, and
N.
Willenbacher
, “
Apparent elongational yield stress of soft matter
,”
J. Rheol.
57
,
627
646
(
2013
).
You do not currently have access to this content.