Many industrial polymer melts are entangled and undergo crystallization during processing. Several recent studies have reported experimental data for the rheology of crystallizing entangled polymers. Meanwhile, over the past few years, slip-link models have been demonstrated to describe the rheology of entangled melts under a variety of nonlinear deformation conditions. In this work, we present a modification of the slip-link model to describe the rheology of an entangled melt undergoing crystallization. The partially crystallized melt is represented by a blend of linear chains with free ends and cross-linked, bridgelike chains with fixed ends that resemble the tie molecules between developing crystallites. Two new parameters are introduced: the fraction of cross-linked chains and a modulus shift factor, both of which are functions of the degree of crystallinity. The model captures the evolution of viscosity and elasticity simultaneously over the whole range of available frequencies in the linear regime. The model is validated using experimental datasets for isotactic polypropylene.

1.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. Part I
,”
J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys.
74
,
1789
1801
(
1978
).
2.
Mead
,
D. W.
,
R. G.
Larson
, and
M.
Doi
, “
A molecular theory for fast flows of entangled polymers
,”
Macromolecules
31
,
7895
7914
(
1998
).
3.
Schieber
,
J. D.
,
J.
Neergaard
, and
S.
Gupta
, “
A full-chain, temporary network model with sliplinks, chain-length fluctuations, chain connectivity and chain stretching
,”
J. Rheol.
47
,
213
233
(
2003
).
4.
Graham
,
R. S.
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
5.
Das
,
C.
,
T. C. B.
McLeish
,
N. J.
Inkson
,
M. A.
Kelmanson
, and
D. J.
Read
, “
Computational linear rheology of general branch-on-branch polymers
,”
J. Rheol.
50
,
207
234
(
2006
).
6.
Schieber
,
J. D.
, and
M.
Andreev
, “
Entangled polymer dynamics in equilibrium and flow modeled through slip links
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
367
381
(
2014
).
7.
Ramírez-Hernández
,
A.
,
B. L.
Peters
,
M.
Andreev
,
J. D.
Schieber
, and
J. J.
De Pablo
, “
A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology
,”
J. Chem. Phys.
143
(
2015
).
8.
Kumaraswamy
,
G.
, “
Crystallization of polymers from stressed melts
,”
J. Macromol. Sci. Polym. Rev.
45
,
375
397
(
2005
).
9.
Peters
,
G. W. M.
,
L.
Balzano
, and
R. J. A.
Steenbakkers
,
Flow-induced crystallization
,
Handbook of Polymer Crystallization
, edited by E. Piorkowska and G. C. Rutledge (Wiley, Hoboken, 2013), pp. 399–431.
10.
Graham
,
R. S.
, “
Modelling flow-induced crystallisation in polymers
,”
Chem. Commun.
50
,
3531
3545
(
2014
).
11.
Lamberti
,
G.
, “
Flow induced crystallisation of polymers
,”
Chem. Soc. Rev.
43
,
2240
2252
(
2014
).
12.
Janeschitz-Kriegl
,
H.,
Crystallization Modalities in Polymer Melt Processing
(
Springer
,
Cham
,
2018
).
13.
Boutahar
,
K.
,
C.
Carrot
, and
J.
Guillet
, “
Crystallization of polyolefins from rheological measurements - relation between the transformed fraction and the dynamic moduli
,”
Macromolecules
31
,
1921
1929
(
1998
).
14.
Pogodina
,
N. V.
, and
H. H.
Winter
, “
Polypropylene crystallization as a physical gelation process
,”
Macromolecules
31
,
8164
8172
(
1998
).
15.
Pogodina
,
N. V.
,
V. P.
Lavrenko
,
S.
Srinivas
, and
H. H.
Winter
, “
Rheology and structure of IPP near gel point: Quiescent and shear-induced crystallization
,”
Polymer
42
,
9031
9043
(
2001
).
16.
Acierno
,
S.
, and
N.
Grizzuti
, “
Measurements of the rheological behavior of a crystallizing polymer by an ‘inverse quenching’ technique
,”
J. Rheol.
47
,
563
576
(
2003
).
17.
Coppola
,
S.
,
S.
Acierno
,
N.
Grizzuti
, and
D.
Vlassopoulos
, “
Viscoelastic behavior of semicrystalline thermoplastic polymers during the early stages of crystallization
,”
Macromolecules
39
,
1507
1514
(
2006
).
18.
Roozemond
,
P. C.
,
V.
Janssens
,
P.
van Puyvelde
, and
G. W. M.
Peters
, “
Suspension-like hardening behavior of HDPE and time-hardening superposition
,”
Rheol. Acta
51
,
97
109
(
2012
).
19.
Pantani
,
R.
,
V.
Speranza
, and
G.
Titomanlio
, “
Simultaneous morphological and rheological measurements on polypropylene: Effect of crystallinity on viscoelastic parameters
,”
J. Rheol.
59
,
377
390
(
2015
).
20.
Plog
,
J. P.
,
M.
Meyer
,
F.
De Vito
,
F.
Soergel
, and
A.
Kotula
, “
Rheo-Raman microscope: Tracking molecular structures as a function of deformation and temperature
,”
AIP Conf. Proc.
1736
,
020072
(
2016
).
21.
Kotula
,
A. P.
, and
K. B.
Migler
, “
Evaluating models for polycaprolactone crystallization via simultaneous rheology and raman spectroscopy
,”
J. Rheol.
62
,
343
356
(
2017
).
22.
Lohmeijer
,
P. J. A.
,
J. G. P.
Goossens
, and
G. W. M.
Peters
, “
Quiescent crystallization of poly(lactic acid) studied by optical microscopy and light-scattering techniques
,”
J. Appl. Polym. Sci.
134
,
2
10
(
2017
).
23.
Portale
,
G.
,
E. M.
Troisi
,
G. W. M.
Peters
, and
W.
Bras
, “
Real-time fast structuring of polymers using synchrotron WAXD/SAXS techniques
,”
Adv. Polym. Sci.
277
,
127
166
(
2017
).
24.
Roozemond
,
P. C.
,
M.
van Drongelen
,
L.
Verbelen
,
P.
Van Puyvelde
, and
G. W. M.
Peters
, “
Flow-induced crystallization studied in the RheoDSC device: Quantifying the importance of edge effects
,”
Rheol. Acta
54
,
1
8
(
2015
).
25.
Derakhshandeh
,
M.
,
A. K.
Doufas
, and
S. G.
Hatzikiriakos
, “
Quiescent and shear-induced crystallization of polyprophylenes
,”
Rheol. Acta
53
,
519
535
(
2014
).
26.
Räntzsch
,
V.
,
M.
Wilhelm
, and
G.
Guthausen
, “
Hyphenated low-field NMR techniques: Combining NMR with NIR, GPC/SEC and rheometry
,”
Magn. Reson. Chem.
54
,
494
501
(
2016
).
27.
Khanna
,
Y. P.
, “
Rheological mechanism and overview of nucleated crystallization kinetics
,”
Macromolecules
26
,
3639
3643
(
1993
).
28.
Gauthier
,
C.
,
J.-F.
Chailan
, and
J.
Chauchard
, “
Utilisation de l’analyse viscoélastique dynamique à l’étude de la cristallisation isotherme du poly(téréphtalate d’ethylène) amorphe. application à des composites unidirectionnels avec fibres de verre
,”
Makromol. Chem.
193
,
1001
1009
(
1992
).
29.
Verbeeten
,
W. M. H.
,
G. W. M.
Peters
, and
F. P. T.
Baaijens
, “
Differential constitutive equations for polymer melts: The extended Pom–Pom model
,”
J. Rheol.
45
,
823
843
(
2002
).
30.
Graham
,
R. S.
, and
P. D.
Olmsted
, “
Coarse-grained simulations of flow-induced nucleation in semicrystalline polymers
,”
Phys. Rev. Lett.
103
,
1
4
(
2009
).
31.
Roozemond
,
P. C.
,
Z.
Ma
,
G. W. M.
Peters
,
M.
van Drongelen
, and
M. A.
Hulsen
, “
Modeling flow-induced crystallization in isotactic polypropylene at high shear rates
,”
J. Rheol.
59
,
613
642
(
2015
).
32.
Steenbakkers
,
R. J. A.
, and
G. W. M.
Peters
, “
A Stretch-based model for flow-enhanced nucleation of polymer melts
,”
J. Rheol.
55
,
401
433
(
2011
).
33.
Khaliullin
,
R. N.
, and
J. D.
Schieber
, “
Self-consistent modeling of constraint release in a single-chain mean-field slip-link model
,”
Macromolecules
42
,
7504
7517
(
2009
).
34.
Andreev
,
M.
,
R. N.
Khaliullin
,
R. J. A.
Steenbakkers
, and
J. D.
Schieber
, “
Approximations of the discrete slip-link model and their effect on nonlinear rheology predictions
,”
J. Rheol.
57
,
535
557
(
2013
).
35.
Pilyugina
,
E.
,
M.
Andreev
, and
J. D.
Schieber
, “
Dielectric relaxation as an independent examination of relaxation mechanisms in entangled polymers using the discrete slip-link model
,”
Macromolecules
45
,
5728
5743
(
2012
).
36.
Andreev
,
M.
, and
J. D.
Schieber
, “
Accessible and quantitative entangled polymer rheology predictions, suitable for complex flow calculations
,”
Macromolecules
48
,
1606
1613
(
2015
).
37.
Khaliullin
,
R. N.
, and
J. D.
Schieber
, “
Application of the slip-link model to bidisperse systems
,”
Macromolecules
43
,
6202
6212
(
2010
).
38.
Valadez-Pérez
,
N. E.
,
K.
Taletskiy
,
J. D.
Schieber
, and
M.
Shivokhin
, “
Efficient determination of slip-link parameters from broadly polydisperse linear melts
,”
Polymers
10
,
1
18
(
2018
).
39.
Taletskiy
,
K.
,
T. A.
Tervoort
, and
J. D.
Schieber
, “
Predictions of the linear rheology of polydisperse, entangled linear polymer melts by using the discrete slip-link model
,”
J. Rheol.
62
,
1331
1338
(
2018
).
40.
Katzarova
,
M.
,
T.
Kashyap
,
J. D.
Schieber
, and
D. C.
Venerus
, “
Linear viscoelastic behavior of bidisperse polystyrene blends: Experiments and slip-link predictions
,”
Rheol. Acta
57
,
327
338
(
2018
).
41.
Katzarova
,
M.
,
M.
Andreev
,
Y.
Sliozberg
,
R. A.
Mrozek
,
J. L.
Lenhart
,
J. W.
Andzelm
, and
J. D.
Schieber
, “
Rheological predictions of network systems swollen with entangled solvent
,”
AIChE J.
60
,
1372
1380
(
2014
).
42.
Andreev
,
M.
,
H.
Feng
,
L.
Yang
, and
J. D.
Schieber
, “
Universality and speedup in equilibrium and nonlinear rheology predictions of the fixed slip-link model
,”
J. Rheol.
58
,
723
736
(
2014
).
43.
Steenbakkers
,
R. J. A.
,
C.
Tzoumanekas
,
Y.
Li
,
W. K.
Liu
,
M.
Kröger
, and
J. D.
Schieber
, “
Primitive-path statistics of entangled polymers: Mapping multi-chain simulations onto single-chain mean-field models
,”
New J. Phys.
16
,
015027
(
2014
).
44.
Lamberti
,
G.
,
G. W. M.
Peters
, and
G.
Titomanlio
, “
Crystallinity and linear rheological properties of polymers
,”
Int. Polym. Process.
22
,
303
310
(
2007
).
45.
Tanner
,
R. I.
, “
On the flow of crystallizing polymers I. linear regime
,”
J. Nonnewton. Fluid Mech.
112
,
251
268
(
2003
).
46.
Steenbakkers
,
R. J. A.
, and
G. W. M.
Peters
, “
Suspension-based rheological modeling of crystallizing polymer melts
,”
Rheol. Acta
47
,
643
665
(
2008
).
47.
Winter
,
H. H.
, and
M.
Mours
,
Rheology of polymers near liquid-solid transitions
, in
Neutron Spin Echo Spectroscopy Viscoelasticity Rheology
(
Springer
,
Berlin
,
1997
), pp.
165
234
.
48.
Pogodina
,
N. V.
,
H. H.
Winter
, and
S.
Srinivas
, “
Strain effects on physical gelation of crystallizing
,”
J. Polymer Sci.
37
,
3512
3519
(
1999
).
49.
Horst
,
R. H.
, and
H. H.
Winter
, “
Stable critical gels of a crystallizing copolymer of ethene and 1-butene
,”
Macromolecules
33
,
130
136
(
2000
).
50.
Horst
,
R. H.
, and
H. H.
Winter
, “
Stable critical gels of a copolymer of ethene and 1-butene achieved by partial melting and recrystallization
,”
Macromolecules
33
,
7538
7543
(
2000
).
51.
Schieber
,
J. D.
, “
Fluctuations in entanglements of polymer liquids
,”
J. Chem. Phys.
118
,
5162
5166
(
2003
).
52.
Jensen
,
M. K.
,
R.
Khaliullin
, and
J. D.
Schieber
, “
Self-consistent modeling of entangled network strands and linear dangling structures in a single-strand mean-field slip-link model
,”
Rheol. Acta
51
,
21
35
(
2012
).
53.
Indei
,
T.
,
J. D.
Schieber
, and
J.-i.
Takimoto
, “
Effects of fluctuations of cross-linking points on viscoelastic properties of associating polymer networks
,”
Rheol. Acta
51
,
1021
1039
(
2012
).
54.
Schieber
,
J. D.
, and
K.
Horio
, “
Fluctuation in entanglement positions via elastic slip-links
,”
J. Chem. Phys.
132
,
074905
(
2010
).
55.
Schieber
,
J. D.
,
T.
Indei
, and
R. J. A.
Steenbakkers
, “
Fluctuating entanglements in single-chain mean-field models
,”
Polymers
5
,
643
678
(
2013
).
56.
Baumgaertel
,
M.
,
A.
Schausberger
, and
H. H.
Winter
, “
The relaxation of polymers with linear flexible chains of uniform length
,”
Rheol. Acta
29
,
400
408
(
1990
).
57.
Balijepalli
,
S.
, and
G. C.
Rutledge
, “
Simulation study of semi-crystalline polymer interphases
,”
Macromol. Symp.
133
,
71
99
(
1998
).
58.
In ’t Veld
,
P. J.
, and
G. C.
Rutledge
, “
Temperature-dependent elasticity of a semicrystalline interphase composed of freely rotating chains
,”
Macromolecules
36
,
7358
7365
(
2003
).
59.
In ’t Veld
,
P. J.
,
M.
Hütter
, and
G. C.
Rutledge
, “
Temperature-dependent thermal and elastic properties of the interlamellar phase of semicrystalline polyethylene by molecular simulation
,”
Macromolecules
39
,
439
447
(
2006
).
60.
Johnson
,
W. A.
, and
R. F.
Mehl
, “
Reaction kinetics in processes of nucleation and growth
,”
Trans. AIME
135
,
416
442
(
1939
).
61.
Avrami
,
M.
, “
Kinetics of phase change. I: General theory
,”
J. Chem. Phys.
7
,
1103
1112
(
1939
).
62.
Avrami
,
M.
, “
Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei
,”
J. Chem. Phys.
8
,
212
224
(
1940
).
63.
Avrami
,
M.
, “
Granulation, phase change, and microstructure kinetics of phase change. III
,”
J. Chem. Phys.
9
,
177
184
(
1941
).
64.
Kolmogorov
,
A. N.
, “
К Статистической Теории Кристаллизации Металлов
,”
Изв. Акад. Наук СССР
3
,
355
359
(
1937
).
65.
Christensen
,
R. M.
, and
K. H.
Lo
, “
Solutions for effective shear properties in three phase sphere and cylinder models
,”
J. Mech. Phys. Solids
27
,
315
330
(
1979
).
66.
Nicholson
,
D. A.
, and
G. C.
Rutledge
, “
An assessment of models for flow-enhanced nucleation in an n-alkane melt by molecular simulation
,”
J. Rheol.
63
,
465
475
(
2019
).
67.
See supplementary material at https://doi.org/10.1122/1.5124383 for detailed multimode representations of molecular weight distribution; an additional dynamic modulus measurement by Pantani et al. with the corresponding fit using the slip-link model; the JMAK equation fit to the crystallinity measurement by Pantani et al.; an illustration of the noise in elastic modulus measurements by Acierno and Grizzuti; fits of slip-link model to the data of Pantani et al. at three different crystallinities, using different placements of crosslinks; fits of the slip-link model to the data for HDPE by Roozemond et al.

Supplementary Material

You do not currently have access to this content.