The experimental data of Matsumiya et al. [Macromolecules 51, 9710–9729 (2018)] for start-up and the steady-state elongational flow of monodisperse unentangled polystyrene PS27k and poly(p-tert-butylstyrene) PtBS53k melts are analyzed based on the relaxation spectrum of the Rouse model and a single integral constitutive equation. As shown by Lodge and Wu [Rheol. Acta 10, 539–553 (1971)], the stress tensor of the Rouse model is equivalent to the rubberlike-liquid constitutive equation, and the relaxation modes of Rouse chains can be represented by an ensemble of virtual viscoelastic “strands” with relaxation times and creation rates. Instead of the affine deformation hypothesis, we assume that due to the flow, strands are oriented and stretched. The use of a history integral avoids preaveraging of orientation and stretch. Stretch is limited by a finite conformational stretch parameter. We find good agreement between model predictions and experimental data for start-up and the steady-state elongational flow of melts PS27k and PtBS53k and qualitative agreement with stress-relaxation after the stop of elongation. Extension-thickening and extension-thinning observed are caused by finite chain stretch in combination with strand orientation. The model predicts a scaling exponent for high Weissenberg number elongational flows of ηEWi1/2 in agreement with experimental evidence. The same scaling exponent was observed and predicted earlier for high Weissenberg number shear flows [R. Colby et al., Rheol. Acta, 46, 569–575 (2007)], and we show that the steady-shear data of unentangled polystyrene melts are in nearly quantitative agreement with model prediction assuming only the orientation of strands in the shear flow with no stretch.

1.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
(
Wiley
,
New York
,
1980
).
2.
Rouse
 Jr.,
P. E
, “
A theory of the linear viscoelastic properties of dilute solutions of coiling polymers
,”
J. Chem. Phys.
21
,
1272
1280
(
1953
).
3.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
Oxford
,
1986
).
4.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
5.
Bueche
,
F.
, “
Viscosity, self-diffusion, and allied effects in solid polymers
,”
J. Chem. Phys.
20
,
1959
1964
(
1952
).
6.
Dealy
,
J. M.
,
D. J.
Read
, and
R. G.
Larson
,
Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again
(
Carl Hanser Verlag
,
Munich
,
2018
).
7.
Colby
,
R.
,
D.
Boris
,
W.
Krause
, and
S.
Dou
, “
Shear thinning of unentangled flexible polymer liquids
,”
Rheol. Acta
46
,
569
575
(
2007
).
8.
Lodge
,
A. S.
, and
Y.-j.
Wu
, “
Constitutive equations for polymer solutions derived from the bead/spring model of Rouse and Zimm
,”
Rheol. Acta
10
,
539
553
(
1971
).
9.
King
,
D.
, and
D.
James
, “
Analysis of the Rouse model in extensional flow. I. A general solution of the distribution function in an arbitrary flow field
,”
J. Chem. Phys.
78
,
4743
4748
(
1983
).
10.
Lodge
,
A.
,
R.
Armstrong
,
M.
Wagner
, and
H.
Winter
, “
Constitutive-equations from Gaussian molecular network theories in polymer rheology
,”
Pure Appl. Chem.
54
,
1350
1359
(
1982
).
11.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O
,
Dynamics of Polymeric Liquids. Vol. 2: Kinetic Theory
(
Wiley
,
New York
,
1987
).
12.
Boris
,
D. C.
, and
R. H.
Colby
, “
Rheology of sulfonated polystyrene solutions
,”
Macromolecules
31
,
5746
5755
(
1998
).
13.
Krause
,
W. E.
,
J. S.
Tan
, and
R. H.
Colby
, “
Semidilute solution rheology of polyelectrolytes with no added salt
,”
J. Polym. Sci. B Polym. Phys.
37
,
3429
3437
(
1999
).
14.
Stratton
,
R. A.
, “
Non-Newtonian flow in polymer systems with no entanglement coupling
,”
Macromolecules
5
,
304
310
(
1972
).
15.
Matsumiya
,
Y.
,
H.
Watanabe
,
Y.
Masubuchi
,
Q.
Huang
, and
O.
Hassager
, “
Nonlinear elongational rheology of unentangled polystyrene and poly (p-tert-butylstyrene) melts
,”
Macromolecules
51
,
9710
9729
(
2018
).
16.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1987
).
17.
Pincus
,
P.
, “
Excluded volume effects and stretched polymer chains
,”
Macromolecules
9
,
386
388
(
1976
).
18.
Takemura
,
T.
, “
Influence of rate of shear on the apparent viscosity of dilute polymer solutions
,”
J. Polym. Sci.
27
,
549
554
(
1958
).
19.
Pao
,
Y. H.
, “
Theories for the flow of dilute solutions of polymers and of nondiluted liquid polymers
,”
J. Polym. Sci.
61
,
413
448
(
1962
).
20.
Inoue
,
T.
,
D.-S.
Ryu
, and
K.
Osaki
, “
A rheo-optical study on polystyrene under large tensile deformation around the glass transition temperature
,”
Macromolecules
31
,
6977
6983
(
1998
).
21.
Okamoto
,
H.
,
T.
Inoue
, and
K.
Osaki
, “
Birefringence of amorphous polymers. 4. Large deformation of polystyrene near its glass transition temperature
,”
Macromolecules
25
,
3413
3415
(
1992
).
22.
Wedgewood
,
L. E.
,
D. N.
Ostrov
, and
R. B.
Bird
, “
A finitely extensible bead-spring chain model for dilute polymer solutions
,”
J. Nonnewton. Fluid Mech.
40
,
119
139
(
1991
).
23.
Ianniruberto
,
G.
,
A.
Brasiello
, and
G.
Marrucci
, “
Modeling unentangled polystyrene melts in fast elongational flows
,”
Macromolecules
52
, 4610–4616 (
2019
).
24.
O’Connor
,
T. C.
,
A.
Hopkins
, and
M. O.
Robbins
, “
Stress relaxation in highly oriented melts of entangled polymers
,”
Macromolecules
52
, 8540–8550 (
2019
).
25.
Doi
,
Y.
,
A.
Takano
,
Y.
Takahashi
, and
Y.
Matsushita
, “
Melt rheology of tadpole-shaped polystyrenes
,”
Macromolecules
48
,
8667
8674
(
2015
).
26.
Chen
,
Q.
,
Y.
Matsumiya
,
Y.
Masubuchi
,
H.
Watanabe
, and
T.
Inoue
, “
Dynamics of polyisoprene-poly (p-tert-butylstyrene) diblock copolymer in disordered state
,”
Macromolecules
44
,
1585
1602
(
2011
).
27.
Fetters
,
L.
,
Lohse
,
D.
, and
Colby
,
R
.,
Chain dimensions and entanglement spacings
, in
Physical Properties of Polymers Handbook
(
Springer
,
Berlin
,
2007
).
28.
Fetters
,
L. J.
,
D. J.
Lohse
, and
W. W.
Graessley
, “
Chain dimensions and entanglement spacings in dense macromolecular systems
,”
J. Polym. Sci. B Polym. Phys.
37
,
1023
1033
(
1999
).
29.
Narimissa
,
E.
, and
M. H.
Wagner
, “
A hierarchical multi-mode molecular stress function model for linear polymer melts in extensional flows
,”
J. Rheol.
60
,
625
636
(
2016
).
30.
Narimissa
,
E.
, and
M. H.
Wagner
, “
Review on tube model based constitutive equations for polydisperse linear and long-chain branched polymer melts
,”
J. Rheol.
63
,
361
375
(
2019
).
31.
Pearson
,
D. S.
,
A. D.
Kiss
,
L. J.
Fetters
, and
M.
Doi
, “
Flow-induced birefringence of concentrated polyisoprene solutions
,”
J. Rheol.
33
,
517
535
(
1989
).
32.
Warner
 Jr,
H. R
. “
Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells
,”
Ind. Eng. Chem. Fundam.
11
,
379
387
(
1972
).
33.
Winter
,
H. H.
, and
M.
Mours
, “
The cyber infrastructure initiative for rheology
,”
Rheol. Acta
45
,
331
338
(
2006
).
34.
Fox
 Jr,
T. G.
and Flory
,
P. J
, “
Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight
,”
J. Appl. Phys.
21
,
581
591
(
1950
).
35.
Shahid
,
T.
,
C.
Clasen
,
F.
Oosterlinck
, and
E.
van Ruymbeke
, “
Diluting entangled polymers affects transient hardening but not their steady elongational viscosity
,”
Macromolecules
52
, 2521–2530 (
2019
).
36.
Wagner
,
M. H.
,
E.
Narimissa
, and
Q.
Huang
, “
Response to “Letter to the editor ‘melt rupture unleashed by few chain scission events in fully stretched strands’” [J. Rheol. 63, 105 (2018)]
,”
J. Rheol.
63
,
419
421
(
2019
).
37.
Bach
,
A.
,
K.
Almdal
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Elongational viscosity of narrow molar mass distribution polystyrene
,”
Macromolecules
36
,
5174
5179
(
2003
).
38.
Huang
,
Q.
,
S.
Agostini
,
L.
Hengeller
,
M.
Shivokhin
,
N. J.
Alvarez
,
L. R.
Hutchings
, and
O.
Hassager
, “
Dynamics of star polymers in fast extensional flow and stress relaxation
,”
Macromolecules
49
,
6694
6699
(
2016
).
39.
Hoyle
,
D.
,
Q.
Huang
,
D.
Auhl
,
D.
Hassell
,
H. K.
Rasmussen
,
A. L.
Skov
,
O.
Harlen
,
O.
Hassager
, and
T.
McLeish
, “
Transient overshoot extensional rheology of long-chain branched polyethylenes: Experimental and numerical comparisons between filament stretching and cross-slot flow
,”
J. Rheol.
57
,
293
313
(
2013
).
40.
Alvarez
,
N. J.
,
J. M. R.
Marín
,
Q.
Huang
,
M. L.
Michelsen
, and
O.
Hassager
, “
Creep measurements confirm steady flow after stress maximum in extension of branched polymer melts
,”
Phys. Rev. Lett.
110
,
168301
(
2013
).
41.
Huang
,
Q.
,
J.
Ahn
,
D.
Parisi
,
T.
Chang
,
O.
Hassager
,
S.
Panyukov
,
M.
Rubinstein
, and
D.
Vlassopoulos
, “
Unexpected stretching of entangled ring macromolecules
,”
Phys. Rev. Lett.
122
,
208001
(
2019
).
42.
Wagner
,
M. H.
,
S.
Kheirandish
, and
O.
Hassager
, “
Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts
,”
J. Rheol.
49
,
1317
1327
(
2005
).
43.
Wingstrand
,
S. L.
,
N. J.
Alvarez
,
Q.
Huang
, and
O.
Hassager
, “
Linear and nonlinear universality in the rheology of polymer melts and solutions
,”
Phys. Rev. Lett.
115
,
078302
(
2015
).
44.
Morelly
,
S. L.
,
L.
Palmese
,
H.
Watanabe
, and
N. J.
Alvarez
, “
Effect of finite extensibility on nonlinear extensional rheology of polymer melts
,”
Macromolecules
52
,
915
922
(
2019
).
45.
O’Connor
,
T. C.
,
N. J.
Alvarez
, and
M. O.
Robbins
, “
Relating chain conformations to extensional stress in entangled polymer melts
,”
Phys. Rev. Lett.
121
,
047801
(
2018
).
46.
Nielsen
,
J. K.
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension
,”
J. Rheol.
52
,
885
899
(
2008
).
You do not currently have access to this content.