In this work, cocontinuous blends of linear low density polyethylene/ethyl vinyl acetate containing graphene (GN) have been studied. Although mass-produced GN grade prepared by mechanochemical exfoliation of graphite and a facile melt compounding technique were adopted, it was possible to lower the electrical percolation threshold significantly by controlling the localization of GN nanoplatelets in the blend and by applying an appropriate thermal annealing procedure. The electrical and rheological properties of the obtained nanocomposites were systematically investigated to get an insight into the composite morphology. During annealing, an alignment between time-dependent behaviors of viscoelastic moduli and electrical conductivity was observed. An increase of both quantities and a simultaneous coarsening of the blend's morphologies occurred during the first 30 min of annealing followed by a more stable behavior. This rise was attributed to the diffusion and flocculation of GN nanoplatelets and their migration to the interface. Furthermore, the electrical and rheological percolation threshold concentrations were evaluated using a scaling power law. The electrical percolation threshold was reduced to 0.5 vol. % upon thermal annealing and was close to the rheological percolation threshold. Finally, the viscoelastic response of the composites was well described by a two-phase model, indicating that the effect of the relaxation dynamics of the interfacial network does not depend on the blend's morphology, even though the latter affects the space arrangement of GN and consequently the strength of the formed network.

1.
Kuester
,
S.
,
N. R.
Demarquette
,
J. C.
Ferreira
,
B. G.
Soares
, and
G. M. O.
Barra
, “
Hybrid nanocomposites of thermoplastic elastomer and carbon nanoadditives for electromagnetic shielding
,”
Eur. Polym. J.
88
,
328
339
(
2017
).
2.
Kazemi
,
Y.
,
A.
Ramezani Kakroodi
,
A.
Ameli
,
T.
Filleter
, and
C. B.
Park
, “
Highly stretchable conductive thermoplastic vulcanizate/carbon nanotube nanocomposites with segregated structure, low percolation threshold and improved cyclic electromechanical performance
,”
J. Mater. Chem. C
6
(
2
),
350
359
(
2018
).
3.
Zhang
,
K.
,
H.-O.
Yu
,
Y.-D.
Shi
,
Y.-F.
Chen
,
J.-B.
Zeng
,
J.
Guo
,
B.
Wang
,
Z.
Guo
, and
M.
Wang
, “
Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(l-lactide)/poly(ɛ-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites
,”
J. Mater. Chem. C
5
(
11
),
2807
2817
(
2017
).
4.
Jia
,
L.-C.
,
D.-X.
Yan
,
C.-H.
Cui
,
X.
Ji
, and
Z.-M.
Li
, “
A unique double percolated polymer composite for highly efficient electromagnetic interference shielding
,”
Macromol. Mater. Eng.
301
(
10
),
1232
1241
(
2016
).
5.
Zakiyan
,
S. E.
,
H.
Azizi
, and
I.
Ghasemi
, “
Influence of chain mobility on rheological, dielectric and electromagnetic interference shielding properties of poly methyl-methacrylate composites filled with graphene and carbon nanotube
,”
Compos. Sci. Technol.
142
,
10
19
(
2017
).
6.
Pang
,
H.
,
L.
Xu
,
D.-X.
Yan
, and
Z.-M.
Li
, “
Conductive polymer composites with segregated structures
,”
Prog. Polym. Sci.
39
(
11
),
1908
1933
(
2014
).
7.
Burns
,
N. M.
,
R. M.
Eichhorn
, and
C. G.
Reid
, “
Stress controlling semiconductive shields in medium voltage power distribution cables
,”
IEEE Electr. Insul. Mag.
8
(
5
),
8
24
(
1992
).
8.
Fritjof
,
N.
, and
U.
Mikael
, “
Conductivity simulations of field-grading composites
,”
J. Phys. D Appl. Phys.
49
(
33
),
335303
(
2016
).
9.
Gaska
,
K.
,
X.
Xu
,
S.
Gubanski
, and
R.
Kádár
, “
Electrical, mechanical, and thermal properties of LDPE graphene nanoplatelets composites produced by means of melt extrusion process
,”
Polymers
9
(
1
),
1
–12 (
2017
).
10.
Mittal
,
G.
,
V.
Dhand
,
K. Y.
Rhee
,
S.-J.
Park
, and
W. R.
Lee
, “
A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites
,”
J. Ind. Eng. Chem.
21
,
11
25
(
2015
).
11.
Kim
,
H.
,
A. A.
Abdala
, and
C. W.
Macosko
, “
Graphene/polymer nanocomposites
,”
Macromolecules
43
(
16
),
6515
6530
(
2010
).
12.
Kuilla
,
T.
,
S.
Bhadra
,
D.
Yao
,
N. H.
Kim
,
S.
Bose
, and
J. H.
Lee
, “
Recent advances in graphene based polymer composites
,”
Prog. Polym. Sci.
35
(
11
),
1350
1375
(
2010
).
13.
Kim
,
H.
, and
C. W.
Macosko
, “
Morphology and properties of polyester/exfoliated graphite nanocomposites
,”
Macromolecules
41
(
9
),
3317
3327
(
2008
).
14.
Zhu
,
Y.
,
S.
Murali
,
W.
Cai
,
X.
Li
,
J. W.
Suk
,
J. R.
Potts
, and
R. S.
Ruoff
, “
Graphene and graphene oxide: Synthesis, properties, and applications
,”
Adv. Mater.
22
(
35
),
3906
3924
(
2010
).
15.
Azizi
,
S.
,
E.
David
,
M. F.
Fréchette
,
P.
Nguyen-Tri
, and
C. M.
Ouellet-Plamondon
, “
Electrical and thermal phenomena in low-density polyethylene/carbon black composites near the percolation threshold
,”
J. Appl. Polym. Sci.
136
,
47043 (
2019
)
.
16.
Kuester
,
S.
,
G. M.
Barra
, and
N. R.
Demarquette
, “
Morphology, mechanical properties and electromagnetic shielding effectiveness of poly(styrene-b-ethylene-ran-butylene-b-styrene)/carbon nanotube nanocomposites: Effects of maleic anhydride, carbon nanotube loading and processing method
,”
Polym. Int.
67
(
9
),
1229
1240
(
2018
).
17.
Novoselov
,
K. S.
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
(
5696
),
666
669
(
2004
).
18.
Choi
,
W.
,
I.
Lahiri
,
R.
Seelaboyina
, and
Y. S.
Kang
, “
Synthesis of graphene and its applications: A review
,”
Crit. Rev. Solid State Mater. Sci.
35
(
1
),
52
71
(
2010
).
19.
Tripathi
,
S. N.
,
G. S. S.
Rao
,
A. B.
Mathur
, and
R.
Jasra
, “
Polyolefin/graphene nanocomposites: A review
,”
RSC Adv.
7
(
38
),
23615
23632
(
2017
).
20.
Kim
,
H.
,
S.
Kobayashi
,
M. A.
AbdurRahim
,
M. J.
Zhang
,
A.
Khusainova
,
M. A.
Hillmyer
,
A. A.
Abdala
, and
C. W.
Macosko
, “
Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods
,”
Polymer
52
(
8
),
1837
1846
(
2011
).
21.
Wang
,
F.
,
Y.
Zhang
,
B. B.
Zhang
,
R. Y.
Hong
,
M. R.
Kumar
, and
C. R.
Xie
, “
Enhanced electrical conductivity and mechanical properties of ABS/EPDM composites filled with graphene
,”
Composites B
83
,
66
74
(
2015
).
22.
Biswas
,
S.
,
G. P.
Kar
, and
S.
Bose
, “
Tailor-made distribution of nanoparticles in blend structure toward outstanding electromagnetic interference shielding
,”
ACS Appl. Mater. Interfaces
7
(
45
),
25448
25463
(
2015
).
23.
Saravanan
,
N.
,
R.
Rajasekar
,
S.
Mahalakshmi
,
T. P.
Sathishkumar
,
K. S. K.
Sasikumar
, and
S.
Sahoo
, “
Graphene and modified graphene-based polymer nanocomposites—A review
,”
J. Reinf. Plast. Compos.
33
(
12
),
1158
1170
(
2014
).
24.
Liao
,
K.-H.
,
Y.
Qian
, and
C. W.
Macosko
, “
Ultralow percolation graphene/polyurethane acrylate nanocomposites
,”
Polymer
53
(
17
),
3756
3761
(
2012
).
25.
Gao
,
C.
,
S.
Zhang
,
F.
Wang
,
P.
Liu
,
Y.
Ding
, and
M.
Yang
, “
Conductive composites with segregated structure and ultralow percolation threshold via flocculation-assembled PVDF/graphene core–shell particles
,”
Mater. Lett.
158
,
428
431
(
2015
).
26.
Wang
,
Z.
,
X.
Shen
,
N. M.
Han
,
X.
Liu
,
Y.
Wu
,
W.
Ye
, and
J.-K.
Kim
, “
Ultralow electrical percolation in graphene aerogel/epoxy composites
,”
Chem. Mater.
28
(
18
),
6731
6741
(
2016
).
27.
Bai
,
L.
,
S.
He
,
J. W.
Fruehwirth
,
A.
Stein
,
C. W.
Macosko
, and
X.
Cheng
, “
Localizing graphene at the interface of cocontinuous polymer blends: Morphology, rheology, and conductivity of cocontinuous conductive polymer composites
,”
J. Rheol.
61
(
4
),
575
587
(
2017
).
28.
Bai
,
L.
,
R.
Sharma
,
X.
Cheng
, and
C. W.
Macosko
, “
Kinetic control of graphene localization in co-continuous polymer blends via melt compounding
,”
Langmuir
34
(
3
),
1073
1083
(
2018
).
29.
Kurusu
,
R. S.
,
E.
Helal
,
N.
Moghimian
,
E.
David
, and
N.
Demarquette
, “
The role of selectively located commercial graphene nanoplatelets in the electrical properties, morphology, and stability of EVA/LLDPE blends
,”
Macromol. Mater. Eng.
303
(
9
),
1800187
(
2018
).
30.
Scherzer
,
S. L.
,
E.
Pavlova
,
J. D.
Esper
, and
Z.
Starý
, “
Phase structure, rheology and electrical conductivity of co-continuous polystyrene/polymethylmethacrylate blends filled with carbon black
,”
Compos. Sci. Technol.
119
,
138
147
(
2015
).
31.
Otero-Navas
,
I.
,
M.
Arjmand
, and
U.
Sundararaj
, “
Carbon nanotube induced double percolation in polymer blends: Morphology, rheology and broadband dielectric properties
,”
Polymer
114
,
122
134
(
2017
).
32.
Soares
,
B. G.
,
F.
Touchaleaume
,
L. F.
Calheiros
, and
G. M. O.
Barra
, “
Effect of double percolation on the electrical properties and electromagnetic interference shielding effectiveness of carbon-black-loaded polystyrene/ethylene vinyl acetate copolymer blends
,”
J. Appl. Polym. Sci.
133
(
7
), 43013 (
2016
).
33.
Sumita
,
M.
,
K.
Sakata
,
Y.
Hayakawa
,
S.
Asai
,
K.
Miyasaka
, and
M.
Tanemura
, “
Double percolation effect on the electrical conductivity of conductive particles filled polymer blends
,”
Colloid Polym. Sci.
270
(
2
),
134
139
(
1992
).
34.
Gubbels
,
F.
,
S.
Blacher
,
E.
Vanlathem
,
R.
Jerome
,
R.
Deltour
,
F.
Brouers
, and
P.
Teyssie
, “
Design of electrical composites: Determining the role of the morphology on the electrical properties of carbon black filled polymer blends
,”
Macromolecules
28
(
5
),
1559
1566
(
1995
).
35.
Gubbels
,
F.
,
R.
Jerome
,
E.
Vanlathem
,
R.
Deltour
,
S.
Blacher
, and
F.
Brouers
, “
Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends
,”
Chem. Mater.
10
(
5
),
1227
1235
(
1998
).
36.
Zhao
,
X.
,
J.
Zhao
,
J.-P.
Cao
,
X.
Wang
,
M.
Chen
, and
Z.-M.
Dang
, “
Tuning the dielectric properties of polystyrene/poly(vinylidene fluoride) blends by selectively localizing carbon black nanoparticles
,”
J. Phys. Chem. B
117
(
8
),
2505
2515
(
2013
).
37.
Gubbels
,
F.
,
R.
Jerome
,
P.
Teyssie
,
E.
Vanlathem
,
R.
Deltour
,
A.
Calderone
,
V.
Parente
, and
J. L.
Bredas
, “
Selective localization of carbon black in immiscible polymer blends: A useful tool to design electrical conductive composites
,”
Macromolecules
27
(
7
),
1972
1974
(
1994
).
38.
Huang
,
S.
,
L.
Bai
,
M.
Trifkovic
,
X.
Cheng
, and
C. W.
Macosko
, “
Controlling the morphology of immiscible cocontinuous polymer blends via silica nanoparticles jammed at the interface
,”
Macromolecules
49
(
10
),
3911
3918
(
2016
).
39.
Shen
,
Y.
,
T.-T.
Zhang
,
J.-H.
Yang
,
N.
Zhang
,
T.
Huang
, and
Y.
Wang
, “
Selective localization of reduced graphene oxides at the interface of PLA/EVA blend and its resultant electrical resistivity
,”
Polym. Compos.
38
(
9
),
1982
1991
(
2017
).
40.
Tan
,
Y.
,
L.
Fang
,
J.
Xiao
,
Y.
Song
, and
Q.
Zheng
, “
Grafting of copolymers onto graphene by miniemulsion polymerization for conductive polymer composites: Improved electrical conductivity and compatibility induced by interfacial distribution of graphene
,”
Polym. Chem.
4
(
10
),
2939
2944
(
2013
).
41.
Genoyer
,
J.
,
M.
Yee
,
J.
Soulestin
, and
N.
Demarquette
, “
Compatibilization mechanism induced by organoclay in PMMA/PS blends
,”
J. Rheol.
61
(
4
),
613
626
(
2017
).
42.
Salzano de Luna
,
M.
, and
G.
Filippone
, “
Effects of nanoparticles on the morphology of immiscible polymer blends—Challenges and opportunities
,”
Eur. Polym. J.
79
,
198
218
(
2016
).
43.
Helal
,
E.
,
C.
Pottier
,
E.
David
,
M.
Fréchette
, and
N. R.
Demarquette
, “
Polyethylene/thermoplastic elastomer/zinc oxide nanocomposites for high voltage insulation applications: Dielectric, mechanical and rheological behavior
,”
Eur. Polym. J.
100
,
258
269
(
2018
).
44.
Trifkovic
,
M.
,
A. T.
Hedegaard
,
M.
Sheikhzadeh
,
S.
Huang
, and
C. W.
Macosko
, “
Stabilization of PE/PEO cocontinuous blends by interfacial nanoclays
,”
Macromolecules
48
(
13
),
4631
4644
(
2015
).
45.
Vandebril
,
S.
,
J.
Vermant
, and
P.
Moldenaers
, “
Efficiently suppressing coalescence in polymer blends using nanoparticles: Role of interfacial rheology
,”
Soft Matter
6
(
14
),
3353
3362
(
2010
).
46.
Parameswaranpillai
,
J. E.
,
N.
Hameed
,
T.
Kurian
, and
Y.
Yu
,
Nanocomposite materials synthesis, properties and applications
, in
Rheological Behavior of Nanocomposites
, edited by
N.
Demarquette
and
D.
Carastan
(
CRC
, Boca Raton, FL,
2017
), Chap. 10.
47.
Clerc
,
J. P.
,
G.
Giraud
,
J. M.
Laugier
, and
J. M.
Luck
, “
The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models
,”
Adv. Phys.
39
(
3
),
191
309
(
1990
).
48.
Filippone
,
G.
,
G.
Romeo
, and
D.
Acierno
, “
Viscoelasticity and structure of polystyrene/fumed silica nanocomposites: Filler network and hydrodynamic contributions
,”
Langmuir
26
(
4
),
2714
2720
(
2010
).
49.
Filippone
,
G.
, and
M.
Salzano de Luna
, “
A unifying approach for the linear viscoelasticity of polymer nanocomposites
,”
Macromolecules
45
(
21
),
8853
8860
(
2012
).
50.
Filippone
,
G.
,
M.
Salzano de Luna
,
D.
Acierno
, and
P.
Russo
, “
Elasticity and structure of weak graphite nanoplatelet (GNP) networks in polymer matrices through viscoelastic analyses
,”
Polymer
53
(
13
),
2699
2704
(
2012
).
51.
Romeo
,
G.
,
G.
Filippone
,
P.
Russo
, and
D.
Acierno
, “
Effects of particle dimension and matrix viscosity on the colloidal aggregation in weakly interacting polymer-nanoparticle composites: A linear viscoelastic analysis
,”
Polym. Bull.
63
(
6
),
883
–895 (
2009
).
52.
Altobelli
,
R.
,
M.
Salzano de Luna
, and
G.
Filippone
, “
Interfacial crowding of nanoplatelets in co-continuous polymer blends: Assembly, elasticity and structure of the interfacial nanoparticle network
,”
Soft Matter
13
(
37
),
6465
6473
(
2017
).
53.
Filippone
,
G.
,
A.
Causa
,
M.
Salzano de Luna
,
L.
Sanguigno
, and
D.
Acierno
, “
Assembly of plate-like nanoparticles in immiscible polymer blends—Effect of the presence of a preferred liquid–liquid interface
,”
Soft Matter
10
(
18
),
3183
3191
(
2014
).
54.
Li
,
W.
,
Y.
Zhang
,
J.
Yang
,
J.
Zhang
,
Y.
Niu
, and
Z.
Wang
, “
Thermal annealing induced enhancements of electrical conductivities and mechanism for multiwalled carbon nanotubes filled poly(ethylene-co-hexene) composites
,”
ACS Appl. Mater. Interfaces
4
(
12
),
6468
6478
(
2012
).
55.
Zhang
,
C.
,
P.
Wang
,
C.-A.
Ma
,
G.
Wu
, and
M.
Sumita
, “
Temperature and time dependence of conductive network formation: Dynamic percolation and percolation time
,”
Polymer
47
(
1
),
466
473
(
2006
).
56.
Alig
,
I.
,
P.
Pötschke
,
D.
Lellinger
,
T.
Skipa
,
S.
Pegel
,
G. R.
Kasaliwal
, and
T.
Villmow
, “
Establishment, morphology and properties of carbon nanotube networks in polymer melts
,”
Polymer
53
(
1
),
4
28
(
2012
).
57.
Huang
,
S.
,
Z.
Liu
,
C.
Yin
,
Y.
Wang
,
Y.
Gao
,
C.
Chen
, and
M.
Yang
, “
Dynamic electrical and rheological percolation in isotactic poly(propylene)/carbon black composites
,”
Macromol. Mater. Eng.
297
(
1
),
51
59
(
2012
).
58.
Gao
,
C.
,
P.
Liu
,
Y.
Ding
,
T.
Li
,
F.
Wang
,
J.
Chen
,
S.
Zhang
,
Z.
Li
, and
M.
Yang
, “
Non-contact percolation of unstable graphene networks in poly(styrene-co-acrylonitrile) nanocomposites: Electrical and rheological properties
,”
Compos. Sci. Technol.
155
,
41
49
(
2018
).
59.
Batista
,
N. L.
,
E.
Helal
,
R. S.
Kurusu
,
N.
Moghimian
,
E.
David
,
N.
Demarquette
, and
P.
Hubert
, “
Mass produced graphene—HDPE nanocomposites: Thermal, rheological, electrical and mechanical properties
,”
Polym. Eng. Sci.
59
(
4
),
675
682
(
2019
).
60.
Moghimian
,
N.
,
S.
Saeidlou
,
H.
Lentzakis
,
G. F.
Rosi
,
N.
Song
, and
E.
David
,
Electrical conductivity of commercial graphene polyethylene nanocomposites
,
2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)
(2017).
61.
Kurusu
,
R. S.
,
E.
Helal
,
N.
Moghimian
,
N.
Demarquette,
and
E.
David
,
Electrical properties of EVA/LLDPE blends with selectively located graphene nanoplatelets,
2nd IEE International Conference on Dielectrics
(2018).
62.
Helal
,
E
.,
R. S.
Kurusu
.,
E.
David
,
N.
Moghimian,
and
N. R.
Demarquette,
Use of rheology as a tool to reduce the nanoparticles percolation threshold in conductive nanocomposites,
34th International Conference of the Polymer Processing Society (PPS 34)
(2018).
63.
Hepperle
,
J.
,
Rheological properties of polymer melts
, in
Co-Rotating Twin-Screw Extruder
, edited by K. Kohlgrüber (
Carl Hanser
, Munich,
2007
), pp.
35
55
.
64.
Jang
,
B. Z.
, and
A.
Zhamu
, “
Processing of nanographene platelets (NGPs) and NGP nanocomposites: A review
,”
J. Mater. Sci.
43
(
15
),
5092
5101
(
2008
).
65.
Jordhamo
,
G. M.
,
J. A. Manson
, and L.
H.
Sperling
, “
Phase continuity and inversion in polymer blends and simultaneous interpenetrating networks
,”
Polym. Eng. Sci.
26
(
8
),
517
524
(
1986
).
66.
Göldel
,
A.
,
G. R.
Kasaliwal
,
P.
Pötschke
, and
G.
Heinrich
, “
The kinetics of CNT transfer between immiscible blend phases during melt mixing
,”
Polymer
53
(
2
),
411
421
(
2012
).
67.
Göldel
,
A.
,
A.
Marmur
,
G. R.
Kasaliwal
,
P.
Pötschke
, and
G.
Heinrich
, “
Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing
,”
Macromolecules
44
(
15
),
6094
6102
(
2011
).
68.
Gao
,
C.
,
S.
Zhang
,
F.
Wang
,
B.
Wen
,
C.
Han
,
Y.
Ding
, and
M.
Yang
, “
Graphene networks with low percolation threshold in ABS nanocomposites: Selective localization and electrical and rheological properties
,”
ACS Appl. Mater. Interfaces
6
(
15
),
12252
12260
(
2014
).
69.
Arbabi
,
S.
, and
M.
Sahimi
, “
Mechanics of disordered solids. I. Percolation on elastic networks with central forces
,”
Phys. Rev. B
47
(
2
),
695
702
(
1993
).
70.
Mamunya
,
Y. P.
,
V. V.
Davydenko
,
P.
Pissis
, and
E. V.
Lebedev
, “
Electrical and thermal conductivity of polymers filled with metal powders
,”
Eur. Polym. J.
38
(
9
),
1887
1897
(
2002
).
71.
See supplementary material at https://doi.org/10.1122/1.5108919 for viscosity data, additional TEM images and scaling parameters of the two-phase model.

Supplementary Material

You do not currently have access to this content.