The vane in cup flow involves the rotation of a bladed vane in a sample held within a cylindrical cup. The use of the vane in cup flow for rheological measurements is based on the assumption that the vane drags the specimen in between its arms as a rigid body and thus, constitutes a bob with equivalent radius, Req, i.e., the “Couette analogy.” In this work, rheo-particle image velocimetry was employed to characterize the velocity and shear stress distributions of a Newtonian fluid (glycerol) and a viscoplastic microgel [0.12 wt. % of poly(acrylic acid) in water] undergoing a steady vane in cup flow under constant torque conditions. The velocity distributions were complex for both fluids, showing that, once under flow, the vane drags only part of the specimen as a rigid body, with the boundary of the rigid body motion smaller than the vane radius, RV. Also, for both fluids, the tangential velocity increases monotonically up to a maximum and then decreases toward the wall cup. Furthermore, the radial locations which constitute the boundary of the rigid body motion or at which the maximum tangential velocity is observed are constant for the Newtonian fluid but decrease for the microgel with increasing the torque. Therefore, there is not a definite method to determine Req for a given vane in cup geometry to allow the application of the “Couette analogy” for non-Newtonian fluids. Otherwise, using RV or a Newtonian based Req to calculate the flow curve may lead to significant errors.
Skip Nav Destination
,
,
,
Article navigation
November 2019
Research Article|
November 01 2019
Rheo-PIV analysis of the vane in cup flow of a viscoplastic microgel
Special Collection:
Shear Banding
Esteban F. Medina-Bañuelos;
Esteban F. Medina-Bañuelos
1
Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional
, U. P. Adolfo López Mateos, C. P. 07738 Ciudad de México, Mexico
Search for other works by this author on:
Benjamín M. Marín-Santibáñez;
Benjamín M. Marín-Santibáñez
1
Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional
, U. P. Adolfo López Mateos, C. P. 07738 Ciudad de México, Mexico
Search for other works by this author on:
José Pérez-González;
José Pérez-González
a)
2
Laboratorio de Reología y Física de la Materia Blanda, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional
, U. P. Adolfo López Mateos, C. P. 07738 Ciudad de México, Mexico
a)Author to whom correspondence should be addressed; electronic mail: [email protected]
Search for other works by this author on:
Dilhan M. Kalyon
Dilhan M. Kalyon
3
Highly Filled Materials Institute, Chemical Engineering and Materials Science and Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology
, Castle Point Street, Hoboken, New Jersey 070300
Search for other works by this author on:
Esteban F. Medina-Bañuelos
1
Benjamín M. Marín-Santibáñez
1
José Pérez-González
2,a)
Dilhan M. Kalyon
3
1
Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional
, U. P. Adolfo López Mateos, C. P. 07738 Ciudad de México, Mexico
2
Laboratorio de Reología y Física de la Materia Blanda, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional
, U. P. Adolfo López Mateos, C. P. 07738 Ciudad de México, Mexico
3
Highly Filled Materials Institute, Chemical Engineering and Materials Science and Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology
, Castle Point Street, Hoboken, New Jersey 070300
a)Author to whom correspondence should be addressed; electronic mail: [email protected]
J. Rheol. 63, 905–915 (2019)
Article history
Received:
July 05 2019
Accepted:
September 20 2019
Citation
Esteban F. Medina-Bañuelos, Benjamín M. Marín-Santibáñez, José Pérez-González, Dilhan M. Kalyon; Rheo-PIV analysis of the vane in cup flow of a viscoplastic microgel. J. Rheol. 1 November 2019; 63 (6): 905–915. https://doi.org/10.1122/1.5118900
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Rheo-SINDy: Finding a constitutive model from rheological data for complex fluids using sparse identification for nonlinear dynamics
Takeshi Sato, Souta Miyamoto, et al.
No yield stress required: Stress-activated flow in simple yield-stress fluids
G. Pagani, M. Hofmann, et al.
Linear viscoelasticity of nanocolloidal suspensions from probe rheology molecular simulations
Dinesh Sundaravadivelu Devarajan, Rajesh Khare
Related Content
Rheo-PIV analysis of the steady torsional parallel-plate flow of a viscoplastic microgel with wall slip
J. Rheol. (November 2021)
Tangential annular (Couette) flow of a viscoplastic microgel with wall slip
J. Rheol. (September 2017)
Rheo-PIV of yield-stress fluids in a 3D-printed fractal vane-in-cup geometry
J. Rheol. (June 2023)
Axial annular flow of a viscoplastic microgel with wall slip
J. Rheol. (May 2016)
Rheo-PIV study of slip effects on oscillatory shear measurements of a yield-stress fluid
J. Rheol. (April 2024)