The vane in cup flow involves the rotation of a bladed vane in a sample held within a cylindrical cup. The use of the vane in cup flow for rheological measurements is based on the assumption that the vane drags the specimen in between its arms as a rigid body and thus, constitutes a bob with equivalent radius, Req, i.e., the “Couette analogy.” In this work, rheo-particle image velocimetry was employed to characterize the velocity and shear stress distributions of a Newtonian fluid (glycerol) and a viscoplastic microgel [0.12 wt. % of poly(acrylic acid) in water] undergoing a steady vane in cup flow under constant torque conditions. The velocity distributions were complex for both fluids, showing that, once under flow, the vane drags only part of the specimen as a rigid body, with the boundary of the rigid body motion smaller than the vane radius, RV. Also, for both fluids, the tangential velocity increases monotonically up to a maximum and then decreases toward the wall cup. Furthermore, the radial locations which constitute the boundary of the rigid body motion or at which the maximum tangential velocity is observed are constant for the Newtonian fluid but decrease for the microgel with increasing the torque. Therefore, there is not a definite method to determine Req for a given vane in cup geometry to allow the application of the “Couette analogy” for non-Newtonian fluids. Otherwise, using RV or a Newtonian based Req to calculate the flow curve may lead to significant errors.

1.
Couette
,
M.
, “
Etudes sur le frottement des liquids
,”
Ann. Chim. Phys.
21
,
433
510
(
1890
).
2.
Jana
,
S. C.
,
B.
Kapoor
, and
A.
Acrivos
, “
Apparent wall slip velocity coefficients in concentrated suspensions of noncolloidal particles
,”
J. Rheol.
39
,
1123
1132
(
1995
).
3.
Coussot
,
P.
,
L.
Tocquer
,
C.
Lanos
, and
G.
Ovarlez
, “
Macroscopic vs. local rheology of yield stress fluids
,”
J. Nonnewton. Fluid Mech.
158
,
85
90
(
2009
).
4.
Medina-Bañuelos
,
E. F.
,
B. M.
Marín-Santibáñez
,
J.
Pérez-González
,
M.
Malik
, and
D. M.
Kalyon
, “
Couette flow of a viscoplastic microgel with wall slip
,”
J. Rheol.
61
,
1007
1022
(
2017
).
5.
Dzuy
,
N. Q.
, and
D. V.
Boger
, “
Yield stress measurement for concentrated suspensions
,”
J. Rheol.
27
,
321
349
(
1983
).
6.
Barnes
,
H. A.
, and
J. O.
Carnali
, “
The vane-in-cup as a novel rheometer geometry for shear thinning and thixotropic materials
,”
J. Rheol.
36
,
841
866
(
1990
).
7.
Flodin
,
N.
, and
B.
Broms
,
Historical development of civil engineering in soft clay
, in
Soft Clay Engineering (Development in Geotechnical Engineering)
, edited by
E. W.
Brand
and
R. P.
Brenner
(
Elsevier
,
Amsterdam
,
1981
).
8.
Bousmina
,
M.
,
A.
Aït-Kadi
, and
J. B.
Faisant
, “
Determination of shear rate and viscosity from batch mixer data
,”
J. Rheol.
43
,
415
433
(
1999
).
9.
Aït-Kadi
,
A.
,
P.
Marchal
,
L.
Choplin
,
A.-S.
Chrissemant
, and
M.
Bousmina
, “
Quantitative analysis of mixer-type rheometers using the Couette analogy
,”
Can. J. Chem. Eng.
80
,
1166
1174
(
2002
).
10.
Estellé
,
P.
,
C.
Lanos
,
A.
Perrot
, and
S.
Amziane
, “
Processing the vane shear flow data from Couette analogy
,”
Appl. Rheol.
18
,
34037
34481
(
2008
).
11.
Keentok
,
M.
,
J. F.
Milthorpe
, and
E.
O’Donovan
, “
On the shearing zone around rotating vanes in plastic liquids: Theory and experiment
,”
J. Nonnewton. Fluid Mech.
17
,
23
35
(
1985
).
12.
Baravian
,
C.
,
A.
Lalante
, and
A.
Parker
, “
Vane rheometry with a large, finite gap
,”
Appl. Rheol.
12
,
81
87
(
2002
).
13.
Savarmand
,
S.
,
M.
Heniche
,
V.
Béchard
,
F.
Bertrand
, and
P. J.
Carreau
, “
Analysis of the vane rheometer using 3D finite element simulation
,”
J. Rheol.
51
,
161
177
(
2007
).
14.
Zhu
,
H.
,
N. S.
Martys
,
C.
Ferraris
, and
D.
De Kee
, “
A numerical study of the flow of Bingham-like fluids in two-dimensional vane and cylinder rheometers using a smoothed particle hydrodynamics (SPH) based method
,”
J. Nonnewton. Fluid Mech.
165
,
362
375
(
2010
).
15.
Potanin
,
A.
, “
3D simulations of the flow of thixotropic fluids, in large-gap Couette and vane-cup geometries
,”
J. Nonnewton. Fluid Mech.
165
,
299
312
(
2010
).
16.
Ovarlez
,
G.
,
F.
Mahaut
,
F.
Bertrand
, and
X.
Chateau
, “
Flows and heterogeneities with a vane tool: MRI measurements
,”
J. Rheol.
55
,
197
223
(
2011
).
17.
Nazari
,
B.
,
R. H.
Moghaddam
, and
D.
Bousfield
, “
A three dimensional model of a vane rheometer
,”
Int. J. Heat Fluid Flow
42
,
289
295
(
2013
).
18.
Marchesini
,
F. H.
,
M. F.
Naccache
,
A.
Abdu
,
A. A.
Alicke
, and
P. R.
de Souza Mendes
, “
Rheological characterization of yield-stress materials: Flow pattern and apparent wall slip
,”
Appl. Rheol.
25
,
53883
(
2015
).
19.
Derakhshandeh
,
B.
,
S. G.
Hatzikiriakos
, and
C. P. J.
Bennington
, “
Rheology of pulp suspensions using ultrasonic Doppler velocimetry
,”
Rheol. Acta
49
,
1127
1140
(
2010
).
20.
Baudonnet
,
L.
,
J. L.
Grossiord
, and
F.
Rodriguez
, “
Effect of dispersion stirring speed on the particle size distribution and rheological properties of three carbomers
,”
J. Disper. Sci. Technol.
25
,
183
192
(
2004
).
21.
Aktas
,
S.
,
D. M.
Kalyon
,
B. M.
Marín-Santibáñez
, and
J.
Pérez-González
, “
Shear viscosity and wall slip behavior of a viscoplastic hydrogel
,”
J. Rheol.
58
(
2
),
513
535
(
2014
).
22.
Ortega-Avila
,
J. F.
,
J.
Pérez-González
,
B. M.
Marín-Santibáñez
,
F.
Rodríguez-González
,
S.
Aktas
,
S M.
Malik
, and
D. M.
Kalyon
, “
Axial annular flow of a viscoplastic microgel with wall slip
,”
J. Rheol.
60
,
503
-
515
(
2016
).
23.
Medina-Bañuelos
,
E. F.
,
B. M.
Marín-Santibáñez
,
J.
Pérez-González
, and
F.
Rodríguez-González
, “
Couette Flow as a yield-stress fluid with slip as studied by Rheo-PIV
,”
Appl. Rheol.
27
,
53893
(
2017
).
24.
Aral
,
B. K.
, and
D. M.
Kalyon
, “
Effects of temperature and surface roughness on time-dependent development of wall slip in steady torsional flow of concentrated suspensions
,”
J. Rheol.
38
,
957
972
(
1994
).
25.
Sherwood
,
J. D.
, and
G. H.
Meeten
, “
The use of the vane to measure the shear modulus of linear elastic solids
,”
J. Nonnewton. Fluid Mech.
41
,
101
118
(
1991
).
26.
Atkinson
,
C.
, and
J. D.
Sherwood
, “
The torque on a rotating n-bladed vane in a Newtonian fluid or linear elastic medium
,”
Proc. R. Soc. Lond. A
438
,
183
196
(
1992
).
27.
Zhang
,
X. D.
,
D. W.
Giles
,
V. H.
Barocas
,
K.
Yasunaga
, and
C. W.
Macosko
, “
Measurement of foam modulus via a vane rheometer
,”
J. Rheol.
42
,
871
888
(
1998
).
28.
Macosko
,
C. W.
,
Rheology: Principles, Measurements, and Applications
(
Wiley-VCH
,
New York
,
1994
).
29.
Kalyon
,
D. M.
, “
Apparent slip and viscoplasticity of concentrated suspensions
,”
J. Rheol.
49
,
621
640
(
2005
).
30.
Kalyon
,
D. M.
, and
S.
Aktaş
, “
Factors affecting the rheology and processability of highly filled suspensions
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
229
254
(
2014
).
31.
Meeker
,
S. P.
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
Slip and flow in pastes of soft particles: Direct observation and rheology
,”
J. Rheol.
48
,
1295
1320
(
2004
).
32.
Meeker
,
S. P.
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
Slip and flow in soft particle pastes
,”
Phys. Rev. Lett.
92
,
198302
(
2004
).
33.
Jiang
,
T. Q.
,
A. C.
Young
, and
A. B.
Metzner
, “
The rheological characterization of HPG gels: Measurement of slip velocities in capillary tubes
,”
Rheol. Acta
25
,
397
404
(
1986
).
34.
Budtova
,
T. V.
,
V. P.
Budtov
,
P.
Navard
, and
S. Y.
Frenkel
, “
Rheological properties of highly swollen hydrogel suspensions
,”
J. Appl. Polym. Sci.
52
,
721
726
(
1994
).
35.
Bonn
,
D.
, and
M. M.
Denn
, “
Yield stress fluids slowly yield to analysis
,”
Science
324
,
1401
1402
(
2009
).
36.
Bonnecaze
,
R. T.
, and
M.
Cloitre
,
Micromechanics of soft particle glasses
, in
High Solid Dispersions
, edited by
M.
Cloitre
(
Springer
,
Berlin
,
2010
).
37.
Kalyon
,
D. M.
, “
Letter to the editor: Comments on the use of rheometers with rough surfaces or surfaces with protrusions
,”
J. Rheol.
49
,
1153
1155
(
2005
).
You do not currently have access to this content.