In processes such as foam injection molding, due to the strong dependence of melt viscosity on gas content, the overall viscosity of a polymer melt will increase once the air phase (i.e., the bubbles) is developed in the polymer matrix. The diffusion of gas from the polymer melt into growing bubbles results in a gas concentration-dependent viscosity profile around each bubble, such that the viscosity at the bubble-melt interface can be significantly larger than further from the bubble. This effect of the viscosity profile on bubble growth and deformation is numerically investigated. We show that the viscosity variation slows the bubble growth rate at the early stages; this is more noticeable in low cell density foams. The effect of the viscosity profile on bubble deformation in a mold-filling simulation is also investigated. We show that the viscosity profile increases the resistance of bubbles to deformation, compared to bubbles that are assumed to be in a melt of uniform viscosity. This difference becomes more pronounced at larger capillary numbers.

1.
Leung
,
S. N.
,
A.
Wong
,
Q.
Guo
,
C. B.
Park
, and
J. H.
Zong
, “
Change in the critical nucleation radius and its impact on cell stability during polymeric foaming processes
,”
Chem. Eng. Sci.
64
(
23
),
4899
4907
(
2009
).
2.
Amon
,
M.
, and
C. D.
Denson
, “
A study of the dynamics of foam growth: Analysis of the growth of closely spaced spherical bubbles
,”
Polym. Eng. Sci.
24
(
13
),
1026
1034
(
1984
).
3.
Arefmanesh
,
A.
,
S. G.
Advani
, and
E. E.
Michaelides
, “
A numerical study of bubble growth during low pressure structural foam molding process
,”
Polym. Eng. Sci.
30
(
20
),
1330
1337
(
1990
).
4.
Arefmanesh
,
A.
, and
S. G.
Advani
, “
Diffusion-induced growth of gas bubble in a viscoelastic fluid
,”
Rheol. Acta
3
,
274
283
(
1991
).
5.
Lee
,
M.
,
C. B.
Park
, and
C.
Tzoganakis
, “
Measurements and modeling of PS/supercritical CO2 solution viscosities
,”
Polym. Eng. Sci.
39
(
1
),
99
109
(
1999
).
6.
Mourtada-Bonnefoi
,
C. C.
, and
H. M.
Mader
, “
On the development of highly-viscous skins of liquid around bubbles during magmatic degassing
,”
Geophys. Res. Lett.
28
(
8
),
1647
1650
, (
2001
).
7.
Arefmanesh
,
A.
, and
S. G.
Advani
, “
Nonisothermal bubble growth in polymeric foams
,”
Polym. Eng. Sci.
35
(
3
),
252
260
(
1995
).
8.
Everitt
,
S. L.
,
O. G.
Harlen
, and
H. J.
Wilson
,
Bubble growth in a two-dimensional viscoelastic foam
,
J. Nonnewton. Fluid Mech.
137
(
13
),
46
59
(
2006
).
9.
Leung
,
S. N.
,
C. B.
Park
,
D.
Xu
,
H.
Li
, and
R. G.
Fenton
, “
Computer simulation of bubble-growth phenomena in foaming
,”
Ind. Eng. Chem. Res.
45
(
23
),
7823
7831
(
2006
).
10.
Lensky
,
N. G.
,
V.
Lyakhovsky
, and
O.
Navon
, “
Radial variations of melt viscosity around growing bubbles and gas overpressure in vesiculating magmas
,”
Earth Planet. Sci. Lett.
186
(
1
),
1
6
(
2001
).
11.
Feng
,
J. J.
, and
C. A.
Bertelo
, “
Prediction of bubble growth and size distribution in polymer foaming based on a new heterogeneous nucleation model
,”
J. Rheol.
48
(
2
),
439
462
(
2004
).
12.
Shaayegan
,
V.
,
L. H.
Mark
,
A.
Tabatabaei
, and
C. B.
Park
, “
A new insight into foaming mechanisms in injection molding via a novel visualization mold
,”
Express Polym. Lett.
10
(
6
),
462
469
(
2016
).
13.
Shaayegan
,
V.
,
G.
Wang
, and
C. B.
Park
, “
Study of the bubble nucleation and growth mechanisms in high-pressure foam injection molding through in-situ visualization
,”
Eur. Polym. J.
7
(
6
),
2
13
(
2016
).
14.
Ataei
,
M.
,
V.
Shaayegan
,
F.
Costa
,
S.
Han
,
C. B.
Park
, and
M.
Bussmann
, “Simulation of polymer foaming using the lattice Boltzmann method,” e-print arXiv:1908.04262 (2019).
15.
Elshereef
,
R.
,
J.
Vlachopoulos
, and
A.
Elkamel
, “
Comparison and analysis of bubble growth and foam formation models
,”
Eng. Comput.
27
(
3
),
387
408
(
2010
).
16.
Shaayegan
,
V.
,
C.
Wang
,
F.
Costa
,
S.
Han
, and
C. B.
Park
, “
Effect of the melt compressibility and the pressure drop rate on the cell-nucleation behavior in foam injection molding with mold opening
,”
Eur. Polym. J.
9
(
2
),
314
325
(
2017
).
17.
Tsakalos
,
V. T.
,
P.
Navard
, and
E.
Peuvrel-Disdier
, “
Deformation and breakup mechanisms of single drops during shear
,”
J. Rheol.
42
(
6
),
1403
1417
(
1998
).
18.
Zhao
,
X.
, “
Drop breakup in dilute newtonian emulsions in simple shear flow: New drop breakup mechanisms
,”
J. Rheol.
51
(
3
),
367
392
(
2007
).
19.
Muller-Fischer
,
N.
,
P.
Tobler
,
M.
Dressler
,
P.
Fischer
, and
E. J.
Windhab
, “
Single bubble deformation and breakup in simple shear flow
,”
Exp. Fluids
45
(
5
),
917
926
(
2008
).
20.
Manga
,
M.
, and
M.
Loewenberg
, “
Viscosity of magmas containing highly deformable bubbles
,”
J. Volcanol. Geotherm. Res.
105
(
1–2
),
19
24
(
2001
).
21.
Murai
,
Y.
, and
H.
Oiwa
, “
Increase of effective viscosity in bubbly liquids from transient bubble deformation
,”
Fluid Dyn. Res.
40
(
7–8
),
565
575
(
2008
).
22.
Barai
,
N.
, and
N.
Mandal
, “
Breakup modes of fluid drops in confined shear flows
,”
Phys. Fluids
28
(
7
),
073302
(
2016
).
23.
Huang
,
H.
,
Y.
Wu
, and
X.
Lu
, “
Shear viscosity of dilute suspensions of ellipsoidal particles with a lattice Boltzmann method
,”
Phys. Rev. E
86
(
4
),
046305
(
2012
).
24.
Raessi
,
M.
, and
H.
Pitsch
, “
Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the level set method
,”
Comput. Fluids
6
(
3
),
70
81
(
2012
).
25.
Yue
,
P.
,
J. J.
Feng
,
C.
Liu
, and
J.
Shen
, “
Viscoelastic effects on drop deformation in steady shear
,”
J. Fluid Mech.
54
,
427
437
(
2005
).
26.
Zhang
,
L.
,
G.
Zhao
,
G.
Dong
,
S.
Li
, and
G.
Wang
, “
Bubble morphological evolution and surface defect formation mechanism in the microcellular foam injection molding process
,”
RSC Adv.
5
(
86
),
70032
70050
(
2015
).
27.
Loken
,
C.
,
D.
Gruner
,
L.
Groer
,
R.
Peltier
,
N.
Bunn
,
M.
Craig
,
T.
Henriques
,
J.
Dempsey
,
C.
Yu
,
J.
Chen
,
L. J.
Dursi
,
J.
Chong
,
S.
Northrup
,
J.
Pinto
,
N.
Knecht
, and
R. V.
Zon
, “
SciNet: Lessons learned from building a power-efficient top-20 system and data centre
,”
J. Phys. Conf. Ser.
256
,
012026
(
2010
).
You do not currently have access to this content.