The addition of six different clays (laponite, montmorillonite, halloysite, and their organomodified counterparts) to poly(methyl methacrylate), polystyrene, and their blends was studied. The morphologies of the obtained composites were studied using transmission electron microscopy and scanning electron microscopy. Small angle oscillatory shear experiments, as well as shear induced coalescence tests, were carried out to evaluate the role of the clay as a coalescence inhibitor. Using the six different clays enabled the evaluation of the effect of the clay location and the clay platelet size for a given location (matrix, dispersed phase, interphase) on the coalescence phenomenon. A decrease of the dispersed phase of the blend was generally observed upon the addition of the clay. Clays located exclusively in the matrix (laponite, montmorillonite, halloysite, and modified halloysite) were shown to migrate to the interface during coalescence tests, inducing a decrease of coalescence at a certain extent of migration. Modified montmorillonite, located at the interface, was the most efficient clay at inhibiting coalescence, due to relaxation of Marangoni stresses with an important barrier effect. Overall, it was shown that having a certain size of a nanoparticle is essential for it to locate at the interface and inhibit coalescence. Nanoparticles with a larger size than the droplets are not able to locate at the interface and, therefore, do not have an effect on coalescence. Conversely, nanoparticles whose size is 10% or less of the droplet were found to be well dispersed in the whole blend. These particles did not have a preferred location nor had an effect on coalescence.

1.
Minale
,
M.
,
J.
Mewis
, and
P.
Moldenaers
, “
Study of the morphological hysteresis in immiscible polymer blends
,”
AIChE J.
44
(
4
),
943
950
(
1998
).
2.
Vinckier
,
I.
,
P.
Moldenaers
,
A. M.
Terracciano
, and
N.
Grizzuti
, “
Droplet size evolution during coalescence in semiconcentrated model blends
,”
AIChE J.
44
(
4
),
951
958
(
1998
).
3.
Van Puyvelde
,
P. V.
, and
P.
Moldenaers
, “
Rheology and morphology development in immiscible polymer blends
,”
Rheol. Rev.
2005,
101
145
.
4.
Tucker
,
C. L.
, and
P.
Moldenaers
, “
Microstructural evolution in polymer blends
,”
Annu. Rev. Fluid Mech.
34
,
177
210
(
2002
).
5.
Parpaite
,
T.
,
B.
Otazaghine
,
A.
Taguet
,
R.
Sonnier
,
A. S.
Caro
, and
J. M.
Lopez-Cuesta
, “
Incorporation of modified Stöber silica nanoparticles in polystyrene/polyamide-6 blends: Coalescence inhibition and modification of the thermal degradation via controlled dispersion at the interface
,”
Polymer
55
(
11
),
2704
2715
(
2014
).
6.
Parpaite
,
T.
,
B.
Otazaghine
,
A. S.
Caro
,
A.
Taguet
,
R.
Sonnier
, and
J. M.
Lopez-Cuesta
, “
Janus hybrid silica/polymer nanoparticles as effective compatibilizing agents for polystyrene/polyamide-6 melted blends
,”
Polymer
90
,
34
44
(
2016
).
7.
Huang
,
M.
, and
H.
Guo
, “
The intriguing ordering and compatibilizing performance of Janus nanoparticles with various shapes and different dividing surface designs in immiscible polymer blends
,”
Soft Matter
9
(
30
),
7356
7368
(
2013
).
8.
Delbem
,
M. F.
,
T. S.
Valera
,
F. R.
Valenzuela-Diaz
, and
N. R.
Demarquette
, “
Modification of a brazilian smectite clay with different quaternary ammonium salts
,”
Quim. Nova
33
(
2
),
309
315
(
2010
).
9.
Cavallaro
,
G.
,
G.
Lazzara
,
S.
Milioto
,
F.
Parisi
, and
V.
Sanzillo
, “
Modified halloysite nanotubes: Nanoarchitectures for enhancing the capture of oils from vapor and liquid phases
,”
ACS Appl. Mater. Interfaces
6
(
1
),
606
612
(
2014
).
10.
Jinhua
,
W.
,
Z.
Xiang
,
Z.
Bing
,
Z.
Yafei
,
Z.
Rui
,
L.
Jindun
, and
C.
Rongfeng
, “
Rapid adsorption of Cr (VI) on modified halloysite nanotubes
,”
Desalination
259
(
1–3
),
22
28
(
2010
).
11.
Sinha Ray
,
S.
,
S.
Pouliot
,
M.
Bousmina
, and
L. A.
Utracki
, “
Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends
,”
Polymer
45
(
25
),
8403
8413
(
2004
).
12.
Xi
,
Y.
,
R. L.
Frost
, and
H.
He
, “
Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides
,”
J. Colloid Interface Sci.
305
(
1
),
150
158
(
2007
).
13.
Tang
,
X.
, and
S.
Alavi
, “
Structure and physical properties of starch/poly vinyl alcohol/laponite RD nanocomposite films
,”
J. Agric. Food Chem.
60
,
1954
1962
(
2012
).
14.
Wang
,
B.
,
M.
Zhou
,
Z.
Rozynek
, and
J. O.
Fossum
, “
Electrorheological properties of organically modified nanolayered laponite: Influence of intercalation, adsorption and wettability
,”
J. Mater. Chem.
19
(
13
),
1816
1828
(
2009
).
15.
Mitchell
,
C. A.
, and
R.
Krishnamoorti
, “
Rheological properties of diblock copolymer/layered-silicate nanocomposites
,”
J. Polym. Sci. B Polym. Phys.
40
(
14
),
1434
1443
(
2002
).
16.
Batista
,
T.
,
A. M.
Chiorcea-Paquim
,
A. M. O.
Brett
,
C. C.
Schmitt
, and
M. G.
Neumann
, “
Laponite RD/polystyrenesulfonate nanocomposites obtained by photopolymerization
,”
Appl. Clay Sci.
53
(
1
),
27
32
(
2011
).
17.
Yurekli
,
K.
,
A.
Karim
,
E. J.
Amis
, and
R.
Krishnamoorti
, “
Influence of layered silicates on the phase-separated morphology of PS-PVME blends
,”
Macromolecules
36
,
7256
7267
(
2003
).
18.
Joussein
,
E.
,
S.
Petit
,
J.
Churchman
,
B.
Theng
,
D.
Righi
, and
B.
Delvaux
, “
Halloysite clay minerals—A review
,”
Clay Miner.
40
,
383
426
(
2005
).
19.
Lvov
,
Y.
,
W.
Wang
,
L.
Zhang
, and
R.
Fakhrullin
, “
Halloysite clay nanotubes for loading and sustained release of functional compounds
,”
Adv. Mater.
20
(
6
),
1227
1250
(
2015
).
20.
Pal
,
P.
,
M. K.
Kundu
,
A.
Malas
, and
C. K.
Das
, “
Compatibilizing effect of halloysite nanotubes in polar-nonpolar hybrid system
,”
J. Appl. Polym. Sci.
131
(
1)
, 39587 (
2014
).
21.
Souza
,
A. M. C.
, and
N. R.
Demarquette
, “
Influence of coalescence and interfacial tension on the morphology of PP/HDPE compatibilized blends
,”
Polymer
43
(
14
),
3959
3967
(
2002
).
22.
Elias
,
L.
,
F.
Fenouillot
,
J.-C.
Majesté
, and
P.
Cassagnau
, “
Morphology and rheology of immiscible polymer blends filled with silica nanoparticles
,”
Polymer
48
,
6029
6040
(
2007
).
23.
Sundararaj
,
U.
, and
C. W.
Macosko
, “
Drop breakup and coalescence in polymer blends : The effects of concentration and compatibilization
,”
Macromolecules
28
(
8
),
2647
2657
(
1995
).
24.
Ramic
,
A. J.
,
J. C.
Stehlin
,
S. D.
Hudson
,
A. M.
Jamieson
, and
I.
Manas-Zloczower
, “
Influence of block copolymer on droplet breakup and coalescence in model immiscible polymer blends
,”
Macromolecules
33
(
2
),
371
374
(
2000
).
25.
Huitric
,
J.
,
M.
Moan
,
P. J.
Carreau
, and
N.
Dufaure
, “
Effect of reactive compatibilization on droplet coalescence in shear flow
,”
J. Nonnewton. Fluid Mech.
145
(
2–3
),
139
149
(
2007
).
26.
Lyu
,
S.
,
T. D.
Jones
,
F. S.
Bates
, and
C. W.
Macosko
, “
Role of block copolymers on suppression of droplet coalescence
,”
Macromolecules
35
(
20
),
7845
7855
(
2002
).
27.
Vermant
,
J.
,
G.
Cioccolo
,
K.
Golapan Nair
, and
P.
Moldenaers
, “
Coalescence suppression in model immiscible polymer blends by nano-sized colloidal particles
,”
Rheol. Acta
43
(
5
),
529
538
(
2004
).
28.
de Souza
,
A. M. C.
,
P. S.
Calvão
, and
N. R.
Demarquette
, “
Linear viscoelastic behavior of compatibilized PMMA/PP blends
,”
J. Appl. Polym. Sci.
129
(
3
),
1280
1289
(
2013
).
29.
Elias
,
L.
,
F.
Fenouillot
,
J. C.
Majesté
,
P.
Alcouffe
, and
P.
Cassagnau
, “
Immiscible polymer blends stabilized with nano-silica particles: Rheology and effective interfacial tension
,”
Polymer
49
(
20
),
4378
4385
(
2008
).
30.
Taguet
,
A.
,
P.
Cassagnau
, and
J.-M.
Lopez-Cuesta
, “
Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends
,”
Prog. Polym. Sci.
39
(
8
),
1526
1563
(
2014
).
31.
Macaúbas
,
P. H.
, and
N.
Demarquette
, “
Morphologies and interfacial tensions of immiscible polypropylene/polystyrene blends modified with triblock copolymers
,”
Polymer
42
(
6
),
2543
2554
(
2001
).
32.
Yee
,
M.
,
P. S.
Calvão
, and
N. R.
Demarquette
, “
Rheological behavior of poly(methyl methacrylate)/polystyrene (PMMA/PS) blends with the addition of PMMA-ran-PS
,”
Rheol. Acta
46
(
5
),
653
664
(
2007
).
33.
Jacobs
,
U.
,
M.
Fahrländer
,
J.
Winterhalter
, and
C.
Friedrich
, “
Analysis of Palierne’s emulsion model in the case of viscoelastic interfacial properties
,”
J. Rheol.
43
(
6
),
1495
1509
(
1999
).
34.
Van Hemelrijck
,
E.
,
P.
Van Puyvelde
,
S.
Velankar
,
C. W.
Macosko
, and
P.
Moldenaers
, “
Interfacial elasticity and coalescence suppression in compatibilized polymer blends
,”
J. Rheol.
48
(
1
),
143
158
(
2003
).
35.
Van Hemelrijck
,
E.
,
P.
Van Puyvelde
,
C. W.
Macosko
, and
P.
Moldenaers
, “
The effect of block copolymer architecture on the coalescence and interfacial elasticity in compatibilized polymer blends
,”
J. Rheol.
49
(
3
),
783
798
(
2005
).
36.
Riemann
,
R.
,
H.
Cantow
, and
C.
Friedrich
, “
Interpretation of a new interface-governed relaxation process in compatibilized polymer blends
,”
Macromolecules
30
(
18
),
5476
5484
(
1997
).
37.
Friedrich
,
C.
, and
Y. Y.
Antonov
, “
Interfacial relaxation in polymer blends and gibbs elasticity
,”
Macromolecules
40
(
4
),
1283
1289
(
2007
).
38.
Fortelný
,
I.
, “
An analysis of the origin of coalescence suppression in compatibilized polymer blends
,”
Eur. Polym. J.
40
(
9
),
2161
2166
(
2004
).
39.
Van Puyvelde
,
P.
,
S.
Velankar
,
J.
Mewis
,
P.
Moldenaers
, and
K. U.
Leuven
, “
Effect of marangoni stresses on the deformation and coalescence in compatibilized immiscible polymer blends
,”
Polym. Eng. Sci.
42
(
10
),
1956
1964
(
2002
).
40.
Genoyer
,
J.
,
M.
Yee
,
J.
Soulestin
, and
N.
Demarquette
, “
Compatibilization mechanism induced by organoclay in PMMA/PS blends
,”
J. Rheol.
61
(
4
),
613
626
(
2017
).
41.
Jeon
,
H. K.
, and
C. W.
Macosko
, “
Visualization of block copolymer distribution on a sheared drop
,”
Polymer
44
(
18
),
5381
5386
(
2003
).
42.
Genoyer
,
J.
,
J.
Soulestin
, and
N. R.
Demarquette
, “
Influence of the molar masses on compatibilization mechanism induced by two block copolymers in PMMA/PS blends
,”
J. Rheol.
62
(
3
),
681
693
(
2018
).
43.
Graebling
,
D.
,
R.
Muller
, and
J. F.
Palierne
, “
Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids
,”
Macromolecules
26
(
2
),
320
329
(
1993
).
44.
Honerkamp
,
J.
, and
J.
Weese
, “
A nonlinear regularization method for the calculation of relaxation spectra
,”
Rheol. Acta
32
(
1
),
65
73
(
1993
).
45.
Palierne
,
J. F.
, “
Linear rheology of viscoelastic emulsions with interfacial tension
,”
Rheol. Acta
29
(
3
),
204
214
(
1990
).
46.
Bousmina
,
M.
,
P.
Bataille
,
S.
Sapieha
, and
H. P.
Schreiber
, “
Comparing the effect of corona treatment and block copolymer addition on rheological properties of polystyrene/polyethylene blends
,”
J. Rheol.
39
(
3
),
499
517
(
1995
).
47.
Paine
,
A. J.
, “
Error Estimates in the sampling from particle size distributions
,”
Part. Part. Syst. Charact.
10
(
1
),
26
32
(
1993
).
48.
Caserta
,
S.
,
M.
Simeone
, and
S.
Guido
, “
Evolution of drop size distribution of polymer blends under shear flow by optical sectioning
,”
Rheol. Acta
43
(
5
),
491
501
(
2004
).
49.
de Bruijn
,
R. A.
,
Deformation and Breakup of Drops in Simple Shear Flows
(
Eindhoven University of Technology
, Eindhoven,
1989
).
50.
Lyu
,
S.-P.
,
F. S.
Bates
, and
C. W.
Macosko
, “
Coalescence in polymer blends during shearing
,”
AIChE J.
46
(
2
),
229
238
(
2000
).
51.
Caserta
,
S.
,
M.
Simeone
, and
S.
Guido
, “
A parameter investigation of shear-induced coalescence in semidilute PIB-PDMS polymer blends: Effects of shear rate, shear stress volume fraction, and viscosity
,”
Rheol. Acta
45
(
4
),
505
512
(
2006
).
52.
See supplementary material at https://doi.org/10.1122/1.5102177 for Fourier Transform Infrared spectra and X-Ray diffraction results of modified clays, as well as the droplets size distribution of all blends after processing.

Supplementary Material

You do not currently have access to this content.