A longstanding goal in polymer rheology is to develop a physical picture that relates the growth of mechanical moduli during polymer crystallization to that of a structure. Here, we utilize simultaneous mechanical rheology and optical microscopy, with augmentation by deterministic reconstruction and stochastic simulations, to study isothermal crystallization in isotactic polypropylene. We observe the nucleation and growth of the surface and bulk spherulites, which are initially isolated and then impinge to form clusters and superstructures that eventually span the gap. We find that spherulitic superstructures play a critical role in the rheology, especially in the characteristic sharp upturn in moduli. Both the rheology and the spherulitic superstructures show pronounced gap dependencies, which we explain via finite-size effects in percolation phenomena and via surface-induced nucleation. The modulus-crystallinity relationship can be described through a general effective medium theory. It indicates that for thicker gaps, the viscoelastic liquid to solid transition can be described via percolation, whereas for our thinnest gap, it is best described by the linear mixing rule. We describe our results in terms of dimensionless nucleation rates and spherulite size, which enable the estimation of when gap-dependent superstructure effects can be anticipated.
Skip Nav Destination
Article navigation
November 2019
Research Article|
November 01 2019
Rheology of crystallizing polymers: The role of spherulitic superstructures, gap height, and nucleation densities
Special Collection:
Flow-Induced Crystallization
Debjani Roy;
Debjani Roy
Materials Science and Engineering Division, NIST
, Gaithersburg, Maryland 20899
Search for other works by this author on:
Debra J. Audus;
Debra J. Audus
Materials Science and Engineering Division, NIST
, Gaithersburg, Maryland 20899
Search for other works by this author on:
Kalman B. Migler
Kalman B. Migler
a)
Materials Science and Engineering Division, NIST
, Gaithersburg, Maryland 20899a)Author to whom correspondence should be addressed; electronic mail: kalman.migler@nist.gov
Search for other works by this author on:
a)Author to whom correspondence should be addressed; electronic mail: kalman.migler@nist.gov
J. Rheol. 63, 851–862 (2019)
Article history
Received:
May 13 2019
Accepted:
August 12 2019
Citation
Debjani Roy, Debra J. Audus, Kalman B. Migler; Rheology of crystallizing polymers: The role of spherulitic superstructures, gap height, and nucleation densities. J. Rheol. 1 November 2019; 63 (6): 851–862. https://doi.org/10.1122/1.5109893
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00