A longstanding goal in polymer rheology is to develop a physical picture that relates the growth of mechanical moduli during polymer crystallization to that of a structure. Here, we utilize simultaneous mechanical rheology and optical microscopy, with augmentation by deterministic reconstruction and stochastic simulations, to study isothermal crystallization in isotactic polypropylene. We observe the nucleation and growth of the surface and bulk spherulites, which are initially isolated and then impinge to form clusters and superstructures that eventually span the gap. We find that spherulitic superstructures play a critical role in the rheology, especially in the characteristic sharp upturn in moduli. Both the rheology and the spherulitic superstructures show pronounced gap dependencies, which we explain via finite-size effects in percolation phenomena and via surface-induced nucleation. The modulus-crystallinity relationship can be described through a general effective medium theory. It indicates that for thicker gaps, the viscoelastic liquid to solid transition can be described via percolation, whereas for our thinnest gap, it is best described by the linear mixing rule. We describe our results in terms of dimensionless nucleation rates and spherulite size, which enable the estimation of when gap-dependent superstructure effects can be anticipated.

1.
Piorkowska
,
E.
, and
G. C.
Rutledge
,
Handbook of Polymer Crystallization
(
Wiley
,
Hoboken
,
NJ
,
2013
).
2.
Carrot
,
C.
,
J.
Guillet
, and
K.
Boutahar
, “
Rheological behavior of a semicrystalline polymer during isothermal crystallization
,”
Rheol. Acta
32
,
566
574
(
1993
).
3.
Boutahar
,
K.
,
C.
Carrot
, and
J.
Guillet
, “
Polypropylene during crystallization from the melt as a model for the rheology of molten-filled polymers
,”
J. Appl. Polym. Sci.
60
,
103
114
(
1996
).
4.
Boutahar
,
K.
,
C.
Carrot
, and
J.
Guillet
, “
Crystallization of polyolefins from rheological measurements—Relation between the transformed fraction and the dynamic moduli
,”
Macromolecules
31
,
1921
1929
(
1998
).
5.
Schwittay
,
C.
,
M.
Mours
, and
H. H.
Winter
, “
Rheological expression of physical gelation in polymers
,”
Faraday Discuss.
101
,
93
104
(
1995
).
6.
Pogodina
,
N. V.
, and
H. H.
Winter
, “
Polypropylene crystallization as a physical gelation process
,”
Macromolecules
31
,
8164
8172
(
1998
).
7.
Pogodina
,
N. V.
,
H. H.
Winter
, and
S.
Srinivas
, “Early stages of polypropylene crystallization as physical gelation,” in Abstracts of Papers of the American Chemical Society (ACS, 1999), Vol. 218, pp. U637–U637.
8.
Pogodina
,
N. V.
,
V. P.
Lavrenko
,
S.
Srinivas
, and
H. H.
Winter
, “
Rheology and structure of isotactic polypropylene near the gel point: Quiescent and shear-induced crystallization
,”
Polymer
42
,
9031
9043
(
2001
).
9.
Gelfer
,
M.
,
R. H.
Horst
,
H. H.
Winter
,
A. M.
Heintz
, and
S. L.
Hsu
, “
Physical gelation of crystallizing metallocene and Ziegler-Natta ethylene-hexene copolymers
,”
Polymer
44
,
2363
2371
(
2003
).
10.
Lamberti
,
G.
,
G. W. M.
Peters
, and
G.
Titomanlio
, “
Crystallinity and linear rheological properties of polymers
,”
Int. Polym. Proc.
22
,
303
310
(
2007
).
11.
Pantani
,
R.
,
V.
Speranza
, and
G.
Titomanlio
, “
Simultaneous morphological and rheological measurements on polypropylene: Effect of crystallinity on viscoelastic parameters
,”
J. Rheol.
59
,
377
390
(
2015
).
12.
Acierno
,
S.
, and
N.
Grizzuti
, “
Measurements of the rheological behavior of a crystallizing polymer by an “inverse quenching” technique
,”
J. Rheol.
47
,
563
576
(
2003
).
13.
Coppola
,
S.
,
S.
Acierno
,
N.
Grizzuti
, and
D.
Vlassopoulos
, “
Viscoelastic behavior of semicrystalline thermoplastic polymers during the early stages of crystallization
,”
Macromolecules
39
,
1507
1514
(
2006
).
14.
Kotula
,
A. P.
, and
K. B.
Migler
, “
Evaluating models for polycaprolactone crystallization via simultaneous rheology and Raman spectroscopy
,”
J. Rheol.
62
,
343
356
(
2018
).
15.
Räntzsch
,
V.
,
M.
Begüm
,
K. F.
Ratzsch
,
E.
Stellamanns
,
M.
Sprung
,
G.
Guthausen
, and
M.
Wilhelm
, “
Polymer crystallization studied by hyphenated rheology techniques: Rheo-NMR, Rheo-SAXS, and Rheo-microscopy
,”
Macromol. Mater. Eng.
304
,
1800586
(
2018
).
16.
Aris-Brosou
,
M.
,
M.
Vincent
,
J. F.
Agassant
, and
N.
Billon
, “
Viscoelastic rheology in the melting and crystallization domain: Application to polypropylene copolymers
,”
J. Appl. Polym. Sci.
134
,
44690
(
2017
).
17.
Hadinata
,
C.
,
C.
Gabriel
,
M.
Ruellmann
,
N.
Kao
, and
H. M.
Laun
, “
Correlation between the gel time and quiescent/quasi-quiescent crystallization onset time of poly(butene-1) as determined from rheological methods
,”
Rheol. Acta
45
,
631
639
(
2006
).
18.
Van Ruth
,
N. J. L.
,
J. F.
Vega
,
S.
Rastogi
, and
J.
Martinez-Salazar
, “
Viscoelastic behaviour during the crystallisation of isotactic polypropylene
,”
J. Mater. Sci.
41
,
3899
3905
(
2006
).
19.
Custodio
,
F.
,
R. J. A.
Steenbakkers
,
P. D.
Anderson
,
G. W. M.
Peters
, and
H. E. H.
Meijer
, “
Model development and validation of crystallization behavior in injection molding prototype flows
,”
Macromol. Theor. Simul.
18
,
469
494
(
2009
).
20.
van Erp
,
T. B.
,
L. E.
Govaert
, and
G. W. M.
Peters
, “
Mechanical performance of injection-molded poly(propylene): Characterization and modeling
,”
Macromol. Mater. Eng.
298
,
348
358
(
2013
).
21.
Titomanlio
,
G.
, and
G.
Lamberti
, “
Modeling flow induced crystallization in film casting of polypropylene
,”
Rheol. Acta.
43
,
146
158
(
2004
).
22.
Zhang
,
Q. L.
,
L. F.
Li
,
F. M.
Su
,
Y. X.
Ji
,
S.
Ali
,
H. Y.
Zhao
,
L. P.
Meng
, and
L. B.
Li
, “
From molecular entanglement network to crystal-cross-linked network and crystal scaffold during film blowing of polyethylene: An in situ synchrotron radiation small- and wide-angle x-ray scattering study
,”
Macromolecules
51
,
4350
4362
(
2018
).
23.
McIlroy
,
C.
, and
R. S.
Graham
, “
Modelling flow-enhanced crystallisation during fused filament fabrication of semi-crystalline polymer melts
,”
Addit. Manuf.
24
,
323
340
(
2018
).
24.
Northcut
,
L. A.
,
S. V.
Orski
,
K. B.
Migler
, and
A. P.
Kotula
, “
Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing
,”
Polymer
154
,
182
187
(
2018
).
25.
Zhao
,
M.
,
K.
Wudy
, and
D.
Drummer
, “
Crystallization kinetics of polyamide 12 during selective laser sintering
,”
Polymers
10
,
168
(
2018
).
26.
McIlroy
,
C.
, and
R. S.
Graham
, “
Modelling flow-enhanced crystallisation during fused filament fabrication of semi-crystalline polymer melts
,”
Addit. Manuf.
24
,
323
340
(
2018
).
27.
He
,
P.
,
W.
Yu
, and
C. X.
Zhou
, “
Agglomeration of crystals during crystallization of semicrystalline polymers: A suspension-based rheological study
,”
Macromolecules
52
,
1042
1054
(
2019
).
28.
Billon
,
N.
,
J. M.
Escleine
, and
J. M.
Haudin
, “
Isothermal crystallization kinetics in a limited volume—A geometrical approach based on Evans theory
,”
Colloid Polym. Sci.
267
,
668
680
(
1989
).
29.
Billon
,
N.
, and
J. M.
Haudin
, “
Overall crystallization kinetics of thin polymer-films—General theoretical approach. 1. Volume nucleation
,”
Colloid Polym. Sci.
267
,
1064
1076
(
1989
).
30.
Durin
,
A.
,
J. L.
Chenot
,
J. M.
Haudin
,
N.
Boyard
, and
J. L.
Bailleul
, “
Simulating polymer crystallization in thin films: Numerical and analytical methods
,”
Eur. Polym. J.
73
,
1
16
(
2015
).
31.
Yuryev
,
Y.
, and
P.
Wood-Adams
, “
Effect of surface nucleation on isothermal crystallization kinetics: Theory, simulation and experiment
,”
Polymer
52
,
708
717
(
2011
).
32.
Lin
,
Y.
, and
Y. R.
Fan
, “
Substrate effect on the crystallization of isotactic polypropylene
,”
J. Appl. Polym. Sci.
125
,
233
245
(
2012
).
33.
Piorkowska
,
E.
,
A.
Galeski
, and
J. M.
Haudin
, “
Critical assessment of overall crystallization kinetics theories and predictions
,”
Prog. Polym. Sci.
31
,
549
575
(
2006
).
34.
Arora
,
D.
, and
H. H.
Winter
, “Network formation in a crystallizing polymer,” in Abstracts of Papers of the American Chemical Society (ACS, 2010), Vol. 240.
35.
Gatos
,
K. G.
,
C.
Minogianni
, and
C.
Galiotis
, “
Quantifying crystalline fraction within polymer spherulites
,”
Macromolecules
40
,
786
789
(
2007
).
36.
Kotula
,
A. P.
,
M. W.
Meyer
,
F.
De Vito
,
J.
Plog
,
A. R. H.
Walker
, and
K. B.
Migler
, “
The rheo-Raman microscope: Simultaneous chemical, conformational, mechanical, and microstructural measures of soft materials
,”
Rev. Sci. Instrum.
87
,
105105
(
2016
).
37.
Tiang
,
J. S.
, and
J. M.
Dealy
, “
Shear-induced crystallization of isotactic polypropylene studied by simultaneous light intensity and rheological measurements
,”
Polym. Eng. Sci.
52
,
835
848
(
2012
).
38.
Ratzsch
,
K. F.
,
C.
Friedrich
, and
M.
Wilhelm
, “
Low-field rheo-NMR: A novel combination of NMR relaxometry with high end shear rheology
,”
J. Rheol.
61
,
905
917
(
2017
).
39.
Janssens
,
V.
,
C.
Block
,
G.
Van Assche
,
B.
Van Mele
, and
P.
Van Puyvelde
, “
RheoDSC analysis of hardening of semi-crystalline polymers during quiescent isothermal crystallization
,”
Int. Polym. Proc.
25
,
304
310
(
2010
).
40.
Rantzsch
,
V.
,
M.
Wilhelm
, and
G.
Guthausen
, “
Hyphenated low-field NMR techniques: Combining NMR with NIR, GPC/SEC and rheometry
,”
Magn. Reson. Chem.
54
,
494
501
(
2016
).
41.
Derakhshandeh
,
M.
,
A. K.
Doufas
, and
S. G.
Hatzikiriakos
, “
Quiescent and shear-induced crystallization of polyprophylenes
,”
Rheol. Acta
53
,
519
535
(
2014
).
42.
Obrzut
,
J.
,
J. F.
Douglas
,
S. B.
Kharchenko
, and
K. B.
Migler
, “
Shear-induced conductor-insulator transition in melt-mixed polypropylene-carbon nanotube dispersions
,”
Phys. Rev. B
76
,
195420
(
2007
).
43.
McLachlan
,
D. S.
, “
An equation for the conductivity of binary-mixtures with anisotropic grain structures
,”
J. Phys. C Solid State Phys.
20
,
865
877
(
1987
).
44.
Silvestre
,
C.
,
S.
Cimmino
,
D.
Duraccio
, and
C.
Schick
, “
Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry
,”
Macromol. Rapid Commun.
28
,
875
881
(
2007
).
45.
Tremblay
,
A. M. S.
, and
J.
Machta
, “
Finite-size effects in continuum percolation
,”
Phys. Rev. B
40
,
5131
5139
(
1989
).
46.
Schmelzer
,
J.
,
S. A.
Brown
,
A.
Wurl
,
M.
Hyslop
, and
R. J.
Blaikie
, “
Finite-size effects in the conductivity of cluster assembled nanostructures
,”
Phys. Rev. Lett.
88
,
226802
(
2002
).
47.
Sajkiewicz
,
P.
, “
Transient and athermal effects in the crystallization of polymers. I. Isothermal crystallization
,”
J. Polym. Sci. B Polym. Phys.
40
,
1835
1849
(
2002
).
48.
Derakhshandeh
,
M.
,
G.
Mozaffari
,
A. K.
Doufas
, and
S. G.
Hatzikiriakos
, “
Quiescent crystallization of polypropylene: Experiments and modeling
,”
J. Polym. Sci. B Polym. Phys.
52
,
1259
1275
(
2014
).
49.
Hamad
,
F. G.
,
R. H.
Colby
, and
S. T.
Milner
, “
Onset of flow-induced crystallization kinetics of highly isotactic polypropylene
,”
Macromolecules
48
,
3725
3738
(
2015
).
50.
Hamad
,
F. G.
,
R. H.
Colby
, and
S. T.
Milner
, “
Lifetime of flow-induced precursors in isotactic polypropylene
,”
Macromolecules
48
,
7286
7299
(
2015
).
51.
Hamad
,
F. G.
,
R. H.
Colby
, and
S. T.
Milner
, “
Transition in crystal morphology for flow-induced crystallization of isotactic polypropylene
,”
Macromolecules
49
,
5561
5575
(
2016
).
52.
See supplementary material at https://doi.org/10.1122/1.5109893 for information about cleaning, for an animated movie of a reconstruction of the growth of the spherulitic superstructure, and for the code and input data used in the simulations and reconstructions.

Supplementary Material

You do not currently have access to this content.