We propose to extend the well-known Doi–Edwards theory to model the viscosity divergence caused by shear-induced crystallization occurring upon startup flow experiments in segmented block copolymers (Mw¯=50kgmol1). Unlike models such as Convective Constraint Release in which the chain relaxation is accelerated by the shear, we propose to increase the final relaxation time of the polymer within the memory function to take into consideration the progressive association of the hard-segments. To this aim, we make use of the Avrami equation in which we parametrize the crystallization rate to depend on the shear rate in a linear way. In this context and contrary to what is generally proposed for supramolecular polymers, we consider the hard-segments aggregation as an irreversible process (infinite lifetime) due to the crystalline nature and the high-functionality of the resulting topological nodes. The exponential trend of the Avrami process is then validated by stress relaxation experiments performed at different levels of strain. Moreover, the growth mode parameter, usually assigned to the geometry of the crystallites, is found to be independent of the shear rate and in excellent agreement with a previous work in which we investigated the quiescent crystallization of the same system. We finally apply our model to fit data measured at different temperatures, well-confirming the development of hard-segments’ crystallites from the very first stages of the isothermal shearing process.

1.
Bates
,
F. S.
,
M. A.
Hillmyer
,
T. P.
Lodge
,
C. M.
Bates
,
K. T.
Delaney
, and
G. H.
Fredrickson
, “
Multiblock polymers: Panacea or Pandora's box?
”,
Science
336
,
434
440
(
2012
).
2.
Drobny
,
J. G.
,
Handbook of Thermoplastic Elastomers
(
Elsevier
,
Amsterdam
,
2014
).
3.
Panthani
,
T. R.
, and
F. S.
Bates
, “
Crystallization and mechanical properties of poly (L-lactide)-based rubbery/semicrystalline multiblock copolymers
,”
Macromolecules
48
,
4529
4540
(
2015
).
4.
Sharma
,
A.
,
G. P.
Baeza
,
L.
Imperiali
,
W. P. J.
Appel
,
C.
Fitié
,
G. V.
Poel
, and
E.
van Ruymbeke
, “
Fast scanning calorimetry clarifies the understanding of the complex melting and crystallization behavior of polyesteramide multi-block copolymers
,”
Polym. Int.
68
,
283
293
(
2018
).
5.
Miller
,
J. A.
,
S. B.
Lin
,
K. K. S.
Hwang
,
K. S.
Wu
,
P. E.
Gibson
, and
S. L.
Cooper
, “
Properties of polyether-polyurethane block copolymers: Effects of hard segment length distribution
,”
Macromolecules
18
,
32
44
(
1985
).
6.
Vinogradov
,
G.
,
V.
Dreval
,
A. Y.
Malkin
,
Y. G.
Yanovsky
,
V.
Barancheeva
,
E.
Borisenkova
,
M.
Zabugina
,
E.
Plotnikova
, and
O. Y.
Sabsai
, “
Viscoelastic properties of butadiene-styrene block copolymers
,”
Rheol. Acta.
17
,
258
263
(
1978
).
7.
Stanciu
,
A.
,
A.
Airinei
,
D.
Timpu
,
A.
Ioanid
,
C.
Ioan
, and
V.
Bulacovschi
, “
Polyurethane/polydimethylsiloxane segmented copolymers
,”
Eur. Polym. J.
35
,
1959
1965
(
1999
).
8.
Li
,
C.
,
S. L.
Goodman
,
R. M.
Albrecht
, and
S. L.
Cooper
, “
Morphology of segmented polybutadiene-polyurethane elastomers
,”
Macromolecules
21
,
2367
2375
(
1988
).
9.
Lan
,
P. N.
,
S.
Corneillie
,
E.
Schacht
,
M.
Davies
, and
A.
Shard
, “
Synthesis and characterization of segmented polyurethanes based on amphiphilic polyether diols
,”
Biomaterials
17
,
2273
2280
(
1996
).
10.
Gaymans
,
R.
, and
J.
De Haan
, “
Segmented copolymers with poly (ester amide) units of uniform length: Synthesis
,”
Polymer
34
,
4360
4364
(
1993
).
11.
Baeza
,
G. P.
,
A.
Sharma
,
A.
Louhichi
,
L.
Imperiali
,
W. P. J.
Appel
,
C. F. C.
Fitié
,
M. P.
Lettinga
,
E. V.
Ruymbeke
, and
D.
Vlassopoulos
, “
Multiscale organization of thermoplastic elastomers with varying content of hard segments
,”
Polymer
107
,
89
101
(
2016
).
12.
Gaymans
,
R. J.
, “
Segmented copolymers with monodisperse crystallizable hard segments: Novel semi-crystalline materials
,”
Prog. Polym. Sci.
36
,
713
748
(
2011
).
13.
Lewis
,
P.
, and
C.
Price
, “
Morphology of ABA block polymers
,”
Nature
223
,
494
495
(
1969
).
14.
Cella
,
R. J.
, “
Morphology of segmented polyester thermoplastic elastomers
,”
J. Polym. Sci.
42
,
727
740
(
1973
).
15.
Nébouy
,
M.
,
A.
de Almeida
,
S.
Brottet
, and
G. P.
Baeza
, “
Process-oriented structure tuning of PBT/PTHF thermoplastic elastomers
,”
Macromolecules
51
,
6291
6302
(
2018
).
16.
Biemond
,
G. J. E.
,
J.
Feijen
, and
R. J.
Gaymans
, “
Influence of polydispersity of crystallizable segments on the properties of segmented block copolymers
,”
Polym. Eng. Sci.
48
,
1389
1400
(
2008
).
17.
de Almeida
,
A.
,
M.
Nébouy
, and
G. P.
Baeza
, “
Bimodal crystallization kinetics of PBT/PTHF segmented block copolymers: Impact of the chain rigidity
,”
Macromolecules
52
,
1227
1240
(
2019
).
18.
Candau
,
N.
,
R.
Laghmach
,
L.
Chazeau
,
J.-M.
Chenal
,
C.
Gauthier
,
T.
Biben
, and
E.
Munch
, “
Strain-induced crystallization of natural rubber and cross-link densities heterogeneities
,”
Macromolecules
47
,
5815
5824
(
2014
).
19.
Candau
,
N.
,
L.
Chazeau
,
J.-M.
Chenal
,
C.
Gauthier
,
J.
Ferreira
,
E.
Munch
, and
C.
Rochas
, “
Characteristic time of strain induced crystallization of crosslinked natural rubber
,”
Polymer
53
,
2540
2543
(
2012
).
20.
Coppola
,
S.
,
N.
Grizzuti
, and
P. L.
Maffettone
, “
Microrheological modeling of flow-induced crystallization
,”
Macromolecules
34
,
5030
5036
(
2001
).
21.
Hadinata
,
C.
,
D.
Boos
,
C.
Gabriel
,
E.
Wassner
,
M.
Rüllmann
,
N.
Kao
, and
M.
Laun
, “
Elongation-induced crystallization of a high molecular weight isotactic polybutene-1 melt compared to shear-induced crystallization
,”
J. Rheol.
51
,
195
215
(
2007
).
22.
Rendon
,
S.
,
W. R.
Burghardt
,
M. L.
Auad
, and
J. A.
Kornfield
, “
Shear-induced alignment of smectic side group liquid crystalline polymers
,”
Macromolecules
40
,
6624
6630
(
2007
).
23.
Graham
,
R. S.
,
A. E.
Likhtman
, and
T. C. B.
McLeish
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
24.
McLeish
,
T.
, “
Tube theory of entangled polymer dynamics
,”
Adv. Phys.
51
,
1379
1527
(
2002
).
25.
Eder
,
G.
, and
H.
Janeschitz-Kriegl
, “
Theory of shear-induced crystallization of polymer melts
,”
Colloid Polym. Sci.
266
,
1087
1094
(
1988
).
26.
Eder
,
G.
,
H.
Janeschitz-Kriegl
, and
G.
Krobath
, “
Shear induced crystallization, a relaxation phenomenon in polymer melts
,”
Prog. Colloid Polym. Sci.
80
,
1
7
(
1989
).
27.
Janeschitz-Kriegl
,
H.
,
E.
Ratajski
, and
M.
Stadlbauer
, “
Flow as an effective promotor of nucleation in polymer melts: A quantitative evaluation
,”
Rheol. Acta
42
,
355
364
(
2003
).
28.
Kornfield
,
J. A.
,
G.
Kumaraswamy
, and
A. M.
Issaian
, “
Recent advances in understanding flow effects on polymer crystallization
,”
Ind. Eng. Chem. Res.
41
,
6383
6392
(
2002
).
29.
Seki
,
M.
,
D. W.
Thurman
,
J. P.
Oberhauser
, and
J. A.
Kornfield
, “
Shear-mediated crystallization of isotactic polypropylene: The role of long chain−long chain overlap
,”
Macromolecules
35
,
2583
2594
(
2002
).
30.
Koscher
,
E.
, and
R.
Fulchiron
, “
Influence of shear on polypropylene crystallization: Morphology development and kinetics
,”
Polymer
43
,
6931
6942
(
2002
).
31.
Nicholson
,
D. A.
, and
G. C.
Rutledge
, “
An assessment of models for flow-enhanced nucleation in an n-alkane melt by molecular simulation
,”
J. Rheol.
63
,
465
475
(
2019
).
32.
Bustos
,
F.
,
P.
Cassagnau
, and
R.
Fulchiron
, “
Effect of molecular architecture on quiescent and shear-induced crystallization of polyethylene
,”
J. Polym. Sci. B Polym. Phys.
44
,
1597
1607
(
2006
).
33.
Tanner
,
R. I.
, and
F.
Qi
, “
A comparison of some models for describing polymer crystallization at low deformation rates
,”
J. Nonnewton. Fluid Mech.
127
,
131
141
(
2005
).
34.
Elmoumni
,
A.
,
H. H.
Winter
,
A. J.
Waddon
, and
H.
Fruitwala
, “
Correlation of material and processing time scales with structure development in isotactic polypropylene crystallization
,”
Macromolecules
36
,
6453
6461
(
2003
).
35.
Hadinata
,
C.
,
C.
Gabriel
,
M.
Ruellman
, and
H.
Laun
, “
Comparison of shear-induced crystallization behavior of PB-1 samples with different molecular weight distribution
,”
J. Rheol.
49
,
327
349
(
2005
).
36.
Somani
,
R. H.
,
L.
Yang
,
B. S.
Hsiao
,
P. K.
Agarwal
,
H. A.
Fruitwala
, and
A. H.
Tsou
, “
Shear-induced precursor structures in isotactic polypropylene melt by in-situ rheo-SAXS and rheo-WAXD studies
,”
Macromolecules
35
,
9096
9104
(
2002
).
37.
Acierno
,
S.
,
B.
Palomba
,
H. H.
Winter
, and
N.
Grizzuti
, “
Effect of molecular weight on the flow-induced crystallization of isotactic poly (1-butene)
,”
Rheol. Acta
42
,
243
250
(
2003
).
38.
van Meerveld
,
J.
,
G. W.
Peters
, and
M.
Hütter
, “
Towards a rheological classification of flow induced crystallization experiments of polymer melts
,”
Rheol. Acta
44
,
119
134
(
2004
).
39.
Qi
,
H. J.
, and
M. C.
Boyce
, “
Stress–strain behavior of thermoplastic polyurethanes
,”
Mech. Mater.
37
,
817
839
(
2005
).
40.
Mourier
,
E.
,
L.
David
,
P.
Alcouffe
,
C.
Rochas
,
F.
Méchin
, and
R.
Fulchiron
, “
Composition effects of thermoplastic segmented polyurethanes on their nanostructuring kinetics with or without preshear
,”
J. Polym. Sci. B Polym. Phys.
49
,
801
811
(
2011
).
41.
Sijbrandi
,
N. J.
,
A. J.
Kimenai
,
E. P. C.
Mes
,
R.
Broos
,
G.
Bar
,
M.
Rosenthal
,
Y.
Odarchenko
,
D. A.
Ivanov
,
P. J.
Dijkstra
, and
J.
Feijen
, “
Synthesis, morphology, and properties of segmented poly(ether amide)s with uniform oxalamide-based hard segments
,”
Macromolecules
45
,
3948
3961
(
2012
).
42.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. Part 4—Rheological properties
,”
J. Chem. Soc. Faraday Trans.
2
(
75
),
38
54
(
1979
).
43.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
New York
,
1988
),
73
p.
44.
Baeza
,
G. P.
, “
The reinforcement effect in well-defined segmented copolymers: Counting the topological constraints at the mesoscopic scale
,”
Macromolecules
51
,
1957
1966
(
2018
).
45.
Costanzo
,
S.
,
G.
Ianniruberto
,
G.
Marrucci
, and
D.
Vlassopoulos
, “
Measuring and assessing first and second normal stress differences of polymeric fluids with a modular cone-partitioned plate geometry
,”
Rheol. Acta.
57
,
363
376
(
2018
).
46.
Cox
,
W. P.
, and
E. H.
Merz
, “
Correlation of dynamic and steady flow viscosities
,”
J. Polym. Sci.
28
,
619
622
(
1958
).
47.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Shear banding in Doi–Edwards fluids
,”
J. Rheol.
61
,
93
106
(
2017
).
48.
Wagner
,
M.
, “
Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt
,”
Rheol. Acta
15
,
136
142
(
1976
).
49.
Zinet
,
M.
,
R.
El Otmani
,
M. H.
Boutaous
, and
P.
Chantrenne
, “
Numerical modeling of nonisothermal polymer crystallization kinetics: Flow and thermal effects
,”
Polym. Eng. Sci.
50
,
2044
2059
(
2010
).
50.
Narimissa
,
E.
, and
M. H.
Wagner
, “
Review on tube model based constitutive equations for polydisperse linear and long-chain branched polymer melts
,”
J. Rheol.
63
,
361
375
(
2019
).
51.
Marrucci
,
G.
, “
Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule
,”
J. Nonnewton. Fluid Mech.
62
,
279
289
(
1996
).
52.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
On compatibility of the Cox-Merz rule with the model of Doi and Edwards
,”
J. Nonnewton. Fluid Mech.
65
,
241
246
(
1996
).
53.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Convective constraint release (CCR) revisited
,”
J. Rheol.
58
,
89
102
(
2014
).
54.
Pantani
,
R.
,
V.
Speranza
, and
G.
Titomanlio
, “
Evolution of iPP relaxation spectrum during crystallization
,”
Macromol. Theory Simul.
23
,
300
306
(
2014
).
55.
Boutahar
,
K.
,
C.
Carrot
, and
J.
Guillet
, “
Crystallization of polyolefins from rheological measurements—Relation between the transformed fraction and the dynamic moduli
,”
Macromolecules
31
,
1921
1929
(
1998
).
56.
Poslinski
,
A. J.
,
M. E.
Ryan
,
R. K.
Gupta
,
S. G.
Seshadri
, and
F. J.
Frechette
, “
Rheological behavior of filled polymeric systems I. Yield stress and shear-thinning effects
,”
J. Rheol.
32
,
703
735
(
1988
).
57.
Utracki
,
L. A.
, “
The shear and elongational flow of polymer melts containing anisometric filler particles; part I
,”
Rubber Chem. Technol.
57
,
507
522
(
1984
).
58.
Leibler
,
L.
,
M.
Rubinstein
, and
R. H.
Colby
, “
Dynamics of reversible networks
,”
Macromolecules
24
,
4701
4707
(
1991
).
59.
González
,
A. E.
, “
Viscosity of ionomer gels
,”
Polymer
24
,
77
80
(
1983
).
60.
Avrami
,
M.
, “
Kinetics of phase change. II transformation-time relations for random distribution of nuclei
,”
J. Chem. Phys.
8
,
212
224
(
1940
).
61.
Lellinger
,
D.
,
G.
Floudas
, and
I.
Alig
, “
Shear induced crystallization in poly (ɛ-caprolactone): Effect of shear rate
,”
Polymer
44
,
5759
5769
(
2003
).
62.
Nazari
,
B.
,
H.
Tran
,
B.
Beauregard
,
M.
Flynn-Hepford
,
D.
Harrell
,
S. T.
Milner
, and
R. H.
Colby
, “
Two distinct morphologies for semicrystalline isotactic polypropylene crystallized after shear flow
,”
Macromolecules
51
,
4750
4761
(
2018
).
63.
See supplementary material at https://doi.org/10.1122/1.5111687 for (1) the startup flow on neat PTHF: variation of shear rate, (2) creep experiments supporting the phase separation in the melt, (3) atomic force microscopy revealing the structure of samples crystallized under shear and in quiescent conditions, (4) quiescent crystallization kinetic study with calorimetry, (5) predictions of the normal stress growth, (6) repetition of the startup flow test: superposition and rescaling for consistency, and (7) alternative method for extracting the characteristic time from stress relaxations after the startup flow.

Supplementary Material

You do not currently have access to this content.