A linear polystyrene melt with broad molecular weight distribution (CAS 0993-53-6 from Aldrich) was characterized in extensional flow using a filament stretching rheometer. A series of measurements were performed, including (1) the startup of uniaxial extensional flow until steady state; (2) the strain controlled reversed (i.e., biaxial) flow following the startup of uniaxial flow; and (3) stress relaxation (i.e., keeping the strain unchanged) also following the startup of uniaxial flow. The measurements were compared with the model by Narimissa and Wagner [J. Rheol. 60, 625–636 (2016)]. Good agreements at low extension rates and low strain values were observed. Higher deviations were observed at high rates under steady state conditions as well as during stress relaxation and reversed flow.

1.
Giesekus
,
H.
, “
Die elastizität von flüssigkeiten
,”
Rheol. Acta
5
,
29
35
(
1966
).
2.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation dependent tensorial mobility
,”
J. Nonnewton. Fluid Mech.
11
,
69
109
(
1982
).
3.
Leonov
,
A. I.
, “
Nonequilibrium thermodynamics and rheology of viscoelastic polymer media
,”
Rheol. Acta
15
,
85
98
(
1976
).
4.
Phan-Thien
,
N.
, and
R. I.
Tanner
, “
A new constitutive equation derived from network theory
,”
J. Nonnewton. Fluid Mech.
2
,
353
365
(
1977
).
5.
Wagner
,
M. H.
, “
Scaling relations for elongational flow of polystyrene melts and concentrated solutions of polystyrene in oligomeric styrene
,”
Rheol. Acta
53
,
765
777
(
2014
).
6.
Yaoita
,
T.
,
T.
Isaki
,
Y.
Masubuchi
,
H.
Watanabe
,
G.
Ianniruberto
, and
G.
Marrucci
, “
Primitive chain network simulation of elongational flows of entangled linear chains: Stretch/orientation-induced reduction of monomeric friction
,”
Macromolecules
45
,
2773
2782
(
2012
).
7.
Ianniruberto
,
G.
,
A.
Brasiello
, and
G.
Marrucci
, “
Simulations of fast shear flows of PS oligomers confirm monomeric friction reduction in fast elongational flows of monodisperse PS melts as indicated by rheooptical data
,”
Macromolecules
45
,
8058
8066
(
2012
).
8.
Masubuchi
,
Y.
,
Y.
Matsumiya
, and
H.
Watanabe
, “
Test of orientation/stretch-induced reduction of friction via primitive chain network simulations for polystyrene, polyisoprene, and poly(n.butyl acrylate)
,”
Macromolecules
47
,
6768
6775
(
2014
).
9.
Ianniruberto
,
G.
, “
Extensional flows of solutions of entangled polymers confirm reduction of friction coefficient
,”
Macromolecules
48
,
6306
6312
(
2015
).
10.
Park
,
G. W.
, and
G.
Ianniruberto
, “
Flow-induced nematic interaction and friction reduction successfully describe PS melt and solution data in extension startup and relaxation
,”
Macromolecules
50
,
4787
4796
(
2017
).
11.
Andreev
,
M.
,
R. N.
Khaliullin
,
R. J. A.
Steenbakkers
, and
J. D.
Schieber
, “
Approximations of the discrete slip-link model and their effect on nonlinear rheology predictions
,”
J. Rheol.
57
,
535
557
(
2013
).
12.
Park
,
J.
,
D. W.
Mead
, and
M. M.
Denn
, “
Stochastic simulation of entangled polymeric liquids in fast flows: Microstructure modification
,”
J. Rheol.
56
,
1057
1081
(
2012
).
13.
Read
,
D. J.
,
D.
Auhl
,
C.
Das
,
J.
den Doelder
,
M.
Kapnistos
,
I.
Vittorias
, and
T. C. B.
McLeish
, “
Linking models of polymerization and dynamics to predict branched polymer structure and flow
,”
Science
333
,
1871
1874
(
2011
).
14.
Auhl
,
D.
,
P.
Chambon
,
T. C. B.
McLeish
, and
D. J.
Read
, “
Elongational flow of blends of long and short polymers: Effective stretch relaxation time
,”
Phys. Rev. Lett.
103
,
136001
(
2009
).
15.
Dhole
,
S.
,
A.
Leygue
,
C.
Bailly
, and
R.
Keunings
, “
A single segment differential tube model with interchain tube pressure effect
,”
J. Nonnewton. Fluid Mech.
161
,
10
18
(
2009
).
16.
Bach
,
A.
,
K.
Almdal
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Elongational viscosity of narrow molar mass distribution polystyrene
,”
Macromolecules
36
,
5174
5179
(
2003
).
17.
Sridhar
,
T.
,
M.
Acharya
,
D. A.
Nguyen
, and
P. K.
Bhattacharjee
, “
On the extensional rheology of polymer melts and concentrated solutions
,”
Macromolecules
47
,
379
386
(
2014
).
18.
Nielsen
,
J. K.
,
O.
Hassager
,
H. K.
Rasmussen
, and
G. H.
McKinley
, “
Observing the chain stretch transition in a highly entangled polyisoprene melt using transient extensional rheometry
,”
J. Rheol.
53
,
1327
1346
(
2009
).
19.
Rasmussen
,
H. K.
,
S. L.
Wingstrand
, and
O.
Hassager
, “
On the universality in the extensional rheology of monodisperse polymer melts and oligomer dilutions thereof
,”
Rheol. Acta
58
,
333
340
(
2019
).
20.
Cox
,
W. P.
, and
E. H.
Merz
, “
Correlation of dynamic and steady flow viscosities
,”
J. Polym. Sci. A
28
,
619
622
(
1958
).
21.
Nielsen
,
J. K.
,
H. K.
Rasmussen
,
O.
Hassager
, and
G. H.
McKinley
, “
Elongational viscosity of monodisperse and bidisperse polystyrene melts
,”
J. Rheol.
50
,
453
476
(
2006
).
22.
Nielsen
,
J. K.
,
H. K.
Rasmussen
,
M.
Denberg
,
K.
Almdal
, and
O.
Hassager
, “
Nonlinear branch-point dynamics of multiarm polystyrene
,”
Macromolecules
39
,
8844
8853
(
2006
).
23.
Huang
,
Q.
,
O.
Mednova
,
H. K.
Rasmussen
,
N. J.
Alvarez
,
A. L.
Skov
,
K.
Almdal
, and
O.
Hassager
, “
Concentrated polymer solutions are different from melts: Role of entanglement molecular weight
,”
Macromolecules
46
,
5026
5035
(
2013
).
24.
Wagner
,
M. H.
, and
S. E.
Stephenson
, “
The irreversibility assumption of network disentanglement in flowing polymer melts and its effects on elastic recoil predictions
,”
J. Rheol.
23
,
489
504
(
1979
).
25.
Wagner
,
M. H.
, “
A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt
,”
J. Nonnewton. Fluid Mech.
4
,
39
55
(
1978
).
26.
Nielsen
,
J. K.
, and
H. K.
Rasmussen
, “
Reversed extension flow
,”
J. Nonnewton. Fluid Mech.
155
,
15
19
(
2008
).
27.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. III. Constitutive equation
,”
J. Chem. Soc. Faraday Trans. II
74
,
1818
1832
(
1978
).
28.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
29.
Rasmussen
,
H. K.
,
P.
Laillé
, and
K.
Yu
, “
Large amplitude oscillatory elongation flow
,”
Rheol. Acta
47
,
97
103
(
2008
).
30.
Nielsen
,
J. K.
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension
,”
J. Rheol.
52
(
4
),
885
899
(
2008
).
31.
Rasmussen
,
H. K.
,
A. L.
Skov
,
J. K.
Nielsen
, and
P.
Laillé
, “
Elongational dynamics of multiarm polystyrene
,”
J. Rheol.
53
,
401
415
(
2009
).
32.
Rasmussen
,
H. K.
, and
T. G.
Eriksson
, “
Gas displacement of polymer melts in a cylinder: Experiments and viscoelastic simulations
,”
J. Nonnewton. Fluid Mech.
143
,
1
9
(
2007
).
33.
Rasmussen
,
H. K.
,
J. H.
Christensen
, and
S. J.
Gøttsche
, “
Inflation of polymer melts into elliptic and circular cylinders
,”
J. Nonnewton. Fluid Mech.
93
,
245
263
(
2000
).
34.
Marin
,
J. M. R.
,
J. K.
Huusom
,
N. J.
Alvarez
,
Q.
Huang
,
H. K.
Rasmussen
,
A.
Bach
,
A. L.
Skov
, and
O.
Hassager
, “
A control scheme for filament stretching rheometers with application to polymer melts
,”
J. Nonnewton. Fluid Mech.
194
,
14
22
(
2013
).
35.
Rasmussen
,
H. K.
,
A. G.
Bejenariu
,
O.
Hassager
, and
D.
Auhl
, “
Experimental evaluation of the pure configurational stress assumption in the flow dynamics of entangled polymer melts
,”
J. Rheol.
54
,
1325
1336
(
2010
).
36.
Szabo
,
P.
, “
Transient filament stretching rheometer part I: Force balance analysis
,”
Rheol. Acta
36
,
277
284
(
1997
).
37.
Nielsen
,
J. K.
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Stress relaxation of narrow molar mass distribution polystyrene following uni-axial extension
,”
J. Rheol.
52
,
885
899
(
2008
).
38.
Marrucci
,
G.
, and
B.
de Cindio
, “
The stress relaxation of molten PMMA at large deformations and its theoretical interpretation
,”
Rheol. Acta
19
,
68
75
(
1980
).
39.
Marrucci
,
G.
, and
N.
Grizzuti
, “
Fast flows of concentrated polymers—Predictions of the tube model on chain stretching
,”
Gazz. Chim. Ital.
118
,
179
185
(
1988
).
40.
Wagner
,
M. H.
,
S.
Kheirandish
, and
O.
Hassager
, “
Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts
,”
J. Rheol.
49
,
1317
1327
(
2005
).
41.
Wagner
,
M. H.
, and
V. H.
Rolón-Garrido
, “
The interchain pressure effect in shear rheology
,”
Rheol. Acta
49
,
459
471
(
2010
).
42.
Narimissa
,
E.
, and
M. H.
Wagner
, “
A hierarchical multimode molecular stress function model for linear polymer melts in extensional flows
,”
J. Rheol.
60
,
625
636
(
2016
).
43.
Urakawa
,
O.
,
M.
Takahashi
,
T.
Masuda
, and
N. G.
Ebrahimi
, “
Damping functions and chain relaxation in uniaxial and biaxial extensions: Comparison with the Doi-Edwards theory
,”
Macromolecules
28
,
7196
7201
(
1995
).
44.
Marrucci
,
G.
, and
G.
Ianniruberto
, “
Interchain pressure effect in extensional flows of entangled polymer melts
,”
Macromolecules
37
,
3934
3942
(
2004
).
45.
Bastian
,
H.
, Non-linear viscoelasticity of linear and long-chain branched polymer melts in shear and extensional flows, Ph.D. thesis, Universität Stuttgart, Stuttgart, 2001.
46.
Hachmann
,
P.
, Multiaxiale dehnung von polymerschmelzen, Ph.D. thesis, ETH Zurich, Zurich, 1996.
47.
Huang
,
Q.
, and
H. K.
Rasmussen
, “
Stress relaxation following uniaxial extension of polystyrene melt and oligomer dilutions
,”
J. Rheol.
60
,
465
471
(
2016
).
You do not currently have access to this content.