Rheological investigation of polyethylene (PE) blends with a significant amount (up to 50 wt. %) of ultrahigh molecular weight PE (UHMWPE, with weight average molecular weight Mw > 106 g/mol) was not accessible so far. The development of special Enders catalysts allows the synthesis of such homogeneous PE reactor blends (RBs). In this paper, by melt blending of RBs with high-density PE polymer matrix, multimodal PE blends were prepared and their rheological properties were investigated. The analysis grants access to better understand how notably high amount of UHMWPE and ultra-broad molecular weight distribution displaying extremely high polydispersity, Ð ∼ 1000, influence the linear viscoelasticity. Moreover, taking advantage of the opportunities offered by molecular models, applying the tube-based time-marching algorithm, the “rheological” molecular weight distribution (MWD) of multimodal PE blends was determined, overcoming drawbacks of high-temperature size exclusion chromatography. Analyzing the zero-shear viscosity, η0, versus Mw scaling relation for blends of any MWD, a correction scheme was developed which allows to take into account the Ð effects on η0 properly. The analysis revealed that in a double logarithmic plot versus Mw, corrected η0 shows a unique linear dependency with a slope of 3.6 if Mw is smaller than the reptation molecular weight (Mr). If Mw > Mr, the slope of this linear dependency turns into 3. The analysis of transition zone between the two linear dependencies allowed the experimental determination of PEs Mr.

1.
Spalding
,
M. A.
, and
A. M.
Chatterjee
,
Handbook of Industrial Polyethylene and Technology
(
John Wiley & Sons
,
Hoboken
,
NJ
,
2017
).
2.
Stürzel
,
M.
,
S.
Mihan
, and
R.
Mulhaupt
, “
From multisite polymerization catalysis to sustainable materials and all-polyolefin composites
,”
Chem. Rev.
116
,
1398
1433
(
2016
).
3.
Plastics Pipe Institute
,
Handbook of Polyethylene Pipe
(
The Plastics Pipe Institute
,
Irving
,
TX
,
2008
).
4.
Allal
,
A.
,
A.
Lavernhe
,
B.
Vergnes
, and
G.
Marin
, “
Relationships between molecular structure and sharkskin defect for linear polymers
,”
J. Nonnewton. Fluid Mech.
134
,
127
135
(
2006
).
5.
Jugo Viloria
,
M.
,
M.
Valtier
, and
B.
Vergnes
, “
Volume instabilities in capillary flow of pure SBR and SBR compounds
,”
J. Rheol.
61
,
1085
1097
(
2017
).
6.
Denn
,
M. M.
, “
Extrusion instabilities and wall slip
,”
Annu. Rev. Fluid Mech.
33
,
265
287
(
2001
).
7.
Marichin
,
V. A.
,
L. P.
Mjasnikova
,
D.
Zenke
,
R.
Hirte
, and
P.
Weigel
, “
Ultra-high strength and ultra-high modulus fibers from polyethylene
,”
Polym. Bull.
12
,
287
292
(
1984
).
8.
Lafleur
,
S.
,
R.
Berthoud
,
R.
Ensinck
,
A.
Cordier
,
G.
de Cremer
,
A.
Philippaerts
,
K.
Bastiaansen
,
T.
Margossian
, and
J. R.
Severn
, “
Tailored bimodal ultra-high molecular weight polyethylene particles
,”
J. Polym. Sci. Part A Polym. Chem.
56
,
1645
1656
(
2018
).
9.
Kelly
,
J. M.
, “
Ultra-high molecular weight polyethylene
,”
J. Macromol. Sci. Polym. Rev.
42
,
355
371
(
2002
).
10.
Boscoletto
,
A. B.
,
R.
Franco
,
M.
Scapin
, and
M.
Tavan
, “
An investigation on rheological and impact behaviour of high density and ultra high molecular weight polyethylene mixtures
,”
Eur. Polym. J.
33
,
97
105
(
1997
).
11.
Aguilar
,
M.
,
S.
Martín
,
J. F.
Vega
,
A.
Muñoz-Escalona
, and
J.
Martínez-Salazar
, “
Processability of a metallocene-catalyzed linear PE improved by blending with a small amount of UHMWPE
,”
J. Polym. Sci. B Polym. Phys.
43
,
2963
2971
(
2005
).
12.
Kurek
,
A.
,
S.
Mark
,
M.
Enders
,
M. O.
Kristen
, and
R.
Mülhaupt
, “
Mesoporous silica supported multiple single-site catalysts and polyethylene reactor blends with tailor-made trimodal and ultra-broad molecular weight distributions
,”
Macromol. Rapid Commun.
31
,
1359
1363
(
2010
).
13.
Stürzel
,
M.
,
A. G.
Kurek
,
T.
Hees
,
Y.
Thomann
,
H.
Blattmann
, and
R.
Mülhaupt
, “
Multisite catalyst mediated polymer nanostructure formation and self-reinforced polyethylene reactor blends with improved toughness/stiffness balance
,”
Polymer
102
,
112
118
(
2016
).
14.
Hofmann
,
D.
,
A.
Kurek
,
R.
Thomann
,
J.
Schwabe
,
S.
Mark
,
M.
Enders
,
T.
Hees
, and
R.
Mülhaupt
, “
Tailored nanostructured HDPE wax/UHMWPE reactor blends as additives for melt-processable all-polyethylene composites and in situ UHMWPE fiber reinforcement
,”
Macromolecules
50
,
8129
8139
(
2017
).
15.
Zhong
,
F.
,
J.
Schwabe
,
D.
Hofmann
,
J.
Meier
,
R.
Thomann
,
M.
Enders
, and
R.
Mülhaupt
, “
All-polyethylene composites reinforced via extended-chain UHMWPE nanostructure formation during melt processing
,”
Polymer
140
,
107
116
(
2018
).
16.
Hees
,
T.
,
F.
Zhong
,
C.
Koplin
,
R.
Jaeger
, and
R.
Mülhaupt
, “
Wear resistant all-PE single-component composites via 1D nanostructure formation during melt processing
,”
Polymer
151
,
47
55
(
2018
).
17.
Dealy
,
J. M.
, and
R. G.
Larson
,
Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again
(
Hanser
,
Munich
,
2006
).
18.
Hatzikiriakos
,
S. G.
, “
Long chain branching and polydispersity effects on the rheological properties of polyethylenes
,”
Polym. Eng. Sci.
40
,
2279
2287
(
2000
).
19.
Ansari
,
M.
,
S. G.
Hatzikiriakos
,
A. M.
Sukhadia
, and
D. C.
Rohlfing
, “
Rheology of Ziegler–Natta and metallocene high-density polyethylenes: Broad molecular weight distribution effects
,”
Rheol. Acta
50
,
17
27
(
2011
).
20.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
(
Wiley
,
New York
,
1980
).
21.
Vega
,
J. F.
,
S.
Rastogi
,
G. W. M.
Peters
, and
H. E. H.
Meijer
, “
Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt
,”
J. Rheol.
48
,
663
678
(
2004
).
22.
Fetters
,
L. J.
,
D. J.
Lohse
,
S. T.
Milner
, and
W. W.
Graessley
, “
Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights
,”
Macromolecules
32
,
6847
6851
(
1999
).
23.
Unidad
,
H. J.
,
M. A.
Goad
,
A. R.
Bras
,
M.
Zamponi
,
R.
Faust
,
J.
Allgaier
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
,
D.
Richter
, and
L. J.
Fetters
, “
Consequences of increasing packing length on the dynamics of polymer melts
,”
Macromolecules
48
,
6638
6645
(
2015
).
24.
Colby
,
R. H.
,
L. J.
Fetters
, and
W. W.
Graessley
, “
The melt viscosity-molecular weight relationship for linear polymers
,”
Macromolecules
20
,
2226
2237
(
1987
).
25.
Stadler
,
F. J.
,
C.
Piel
,
J.
Kaschta
,
S.
Rulhoff
,
W.
Kaminsky
, and
H.
Münstedt
, “
Dependence of the zero shear-rate viscosity and the viscosity function of linear high-density polyethylenes on the mass-average molar mass and polydispersity
,”
Rheol. Acta
45
,
755
764
(
2006
).
26.
Otegui
,
J.
,
J.
Ramos
,
J. F.
Vega
, and
J.
Martínez-Salazar
, “
Effect of high molar mass species on linear viscoelastic properties of polyethylene melts
,”
Eur. Polym. J.
49
,
2748
2758
(
2013
).
27.
Vega
,
J. F.
,
J.
Otegui
,
J.
Ramos
, and
J.
Martínez-Salazar
, “
Effect of molecular weight distribution on Newtonian viscosity of linear polyethylene
,”
Rheol. Acta
51
,
81
87
(
2012
).
28.
Wingstrand
,
S. L.
,
B.
Shen
,
J. A.
Kornfield
,
K.
Mortensen
,
D.
Parisi
,
D.
Vlassopoulos
, and
O.
Hassager
, “
Rheological link between polymer melts with a high molecular weight tail and enhanced formation of Shish-Kebabs
,”
ACS Macro Lett.
6
,
1268
1273
(
2017
).
29.
Suzuki
,
N.
,
Y.
Masubuchi
,
Y.
Yamaguchi
,
T.
Kase
,
T. K.
Miyamoto
,
A.
Horiuchi
, and
T.
Mise
, “
Olefin polymerization using highly congested ansa-metallocenes under high pressure: Formation of superhigh molecular weight polyolefins
,”
Macromolecules
33
,
754
759
(
2000
).
30.
Talebi
,
S.
,
R.
Duchateau
,
S.
Rastogi
,
J.
Kaschta
,
G. W. M.
Peters
, and
P. J.
Lemstra
, “
Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst
,”
Macromolecules
43
,
2780
2788
(
2010
).
31.
Mes
,
E. P. C.
,
H.
de Jonge
,
T.
Klein
,
R. R.
Welz
, and
D. T.
Gillespie
, “
Characterization of high molecular weight polyethylenes using high temperature asymmetrical flow field-flow fractionation with on-line infrared, light scattering, and viscometry detection
,”
J. Chromatogr. A
1154
,
319
330
(
2007
).
32.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
33.
Milner
,
S. T.
, and
T. C. B.
McLeish
, “
Reptation and contour-length fluctuations in melts of linear polymers
,”
Phys. Rev. Lett.
81
,
725
728
(
1998
).
34.
van Ruymbeke
,
E.
,
C.-Y.
Liu
, and
C.
Bailly
, “
Quantitative tube model predictions for the linear viscoelasticity of linear polymers
,” in
Rheology Reviews 2007
, edited by
D. M.
Binding
,
N. E.
Hudson
, and
R.
Kevnings
(
The British Society of Rheology
,
2007
), pp.
53
134
.
35.
Winter
,
H. H.
, and
M.
Mours
, “
The cyber infrastructure initiative for rheology
,”
Rheol. Acta
45
,
331
338
(
2006
).
36.
Honerkamp
,
J.
, and
J.
Weese
, “
A nonlinear regularization method for the calculation of relaxation spectra
,”
Rheol. Acta
32
,
65
73
(
1993
).
37.
van Ruymbeke
,
E.
,
R.
Keunings
, and
C.
Bailly
, “
Determination of the molecular weight distribution of entangled linear polymers from linear viscoelasticity data
,”
J. Nonnewton. Fluid Mech.
105
,
153
175
(
2002
).
38.
van Ruymbeke
,
E.
,
A.
Kaivez
,
A.
Hagenaars
,
D.
Daoust
,
P.
Godard
,
R.
Keunings
, and
C.
Bailly
, “
Characterization of sparsely long chain branched polycarbonate by a combination of solution, rheology and simulation methods
,”
J. Rheol.
50
,
949
973
(
2006
).
39.
Tsenoglou
,
C.
, “
Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers
,”
Macromolecules
24
,
1762
1767
(
1991
).
40.
des Cloizeau
,
J.
, “
Double reptation vs. simple reptation in polymer melts
,”
Europhys Lett.
6
,
475
(
1988
).
41.
van Ruymbeke
,
E.
,
Y.
Masubuchi
, and
H.
Watanabe
, “
Effective value of the dynamic dilution exponent in bidisperse linear polymers: From 1 to 4/3
,”
Macromolecules
45
,
2085
2098
(
2012
).
42.
van Ruymbeke
,
E.
,
V.
Shchetnikava
,
Y.
Matsumiya
, and
H.
Watanabe
, “
Dynamic dilution effect in binary blends of linear polymers with well-separated molecular weights
,”
Macromolecules
47
,
7653
7665
(
2014
).
43.
Park
,
S. J.
, and
R. G.
Larson
, “
Dilution exponent in the dynamic dilution theory for polymer melts
,”
J. Rheol.
47
,
199
211
(
2003
).
44.
van Ruymbeke
,
E.
,
R.
Keunings
, and
C.
Bailly
, “
Prediction of linear viscoelastic properties for polydisperse mixtures of entangled star and linear polymers: Modified tube-based model and comparison with experimental results
,”
J. Nonnewton. Fluid Mech.
128
,
7
22
(
2005
).
45.
Auhl
,
D.
,
P.
Chambon
,
T. C. B.
McLeish
, and
D. J.
Read
, “
Elongational flow of blends of long and short polymers: Effective stretch relaxation time
,”
Phys. Rev. Lett.
103
,
136001
(
2009
).
46.
Schwarzl
,
F. R.
, “
Numerical calculation of storage and loss modulus from stress relaxation data for linear viscoelastic materials
,”
Rheol. Acta
10
,
165
173
(
1971
).
47.
Aguilar
,
M.
,
J. F.
Vega
,
E.
Sanz
, and
J.
Martínez-Salazar
, “
New aspects on the rheological behaviour of metallocene catalysed polyethylenes
,”
Polymer
42
,
9713
9721
(
2001
).
48.
Szántó
,
L.
,
R.
Vogt
,
J.
Meier
,
D.
Auhl
,
E.
van Ruymbeke
, and
C.
Friedrich
, “
Entanglement relaxation time of polyethylene melts from high-frequency rheometry in the mega-hertz range
,”
J. Rheol.
61
,
1023
1033
(
2017
).
49.
Stürzel
,
M.
,
Y.
Thomann
,
M.
Enders
, and
R.
Mülhaupt
, “
Graphene-supported dual-site catalysts for preparing self-reinforcing polyethylene reactor blends containing UHMWPE nanoplatelets and in situ UHMWPE Shish-Kebab nanofibers
,”
Macromolecules
47
,
4979
4986
(
2014
).
50.
Stürzel
,
M.
,
T.
Hees
,
M.
Enders
,
Y.
Thomann
,
H.
Blattmann
, and
R.
Mülhaupt
, “
Nanostructured polyethylene reactor blends with tailored trimodal molar mass distributions as melt-processable all-polymer composites
,”
Macromolecules
49
,
8048
8060
(
2016
).
51.
Stürzel
,
M.
,
A.
Kurek
,
M.
Anselm
,
T.
Halbach
, and
R.
Mülhaupt
,
Polyolefin nanocomposites and hybrid catalysts
, in
Polyolefins 50 years after Ziegler and Natta
, edited by
W.
Kaminsky
(
Springer
,
Heidelberg
,
2013
), Vols. 257–258, pp.
279
309
.
52.
Kurek
,
A.
,
S.
Mark
,
M.
Enders
,
M.
Stürzel
, and
R.
Mülhaupt
, “
Two-site silica supported Fe/Cr catalysts for tailoring bimodal polyethylenes with variable content of UHMWPE
,”
J. Mol. Catal. A Chem.
383–384
,
53
57
(
2014
).
53.
Kurek
,
A.
,
R.
Xalter
,
M.
Stürzel
, and
R.
Mülhaupt
, “
Silica nanofoam (NF) supported single- and dual-site catalysts for ethylene polymerization with morphology control and tailored bimodal molar mass distributions
,”
Macromolecules
46
,
9197
9201
(
2013
).
54.
Mavridis
,
H.
, and
R. N.
Shroff
, “
Temperature dependence of polyolefin melt rheology
,”
Polym. Eng. Sci.
32
,
1778
1791
(
1992
).
55.
Wood-Adams
,
P.
, and
S.
Costeux
, “
Thermorheological behavior of polyethylene: Effects of microstructure and long chain branching
,”
Macromolecules
34
,
6281
6290
(
2001
).
56.
Macosko
,
C. W.
,
Rheology: Principles, Measurements, and Applications
(
VCH
,
New York
,
1994
).
57.
Wu
,
T.
,
L.
Yu
,
Y.
Cao
,
F.
Yang
, and
M.
Xiang
, “
Effect of molecular weight distribution on rheological, crystallization and mechanical properties of polyethylene-100 pipe resins
,”
J. Polym. Res.
20
,
271
(
2013
).
58.
Krishnaswamy
,
R. K.
,
D. C.
Rohlfing
,
A. M.
Sukhadia
, and
K. R.
Slusarz
, “
Extrusion of broad-molecular-weight-distribution polyethylenes
,”
Polym. Eng. Sci.
44
,
2266
2273
(
2004
).
59.
Vinogradov
,
G. V.
, and
A. I.
Malkin
, in
Rheology of Polymers: Viscoelasticity and Flow of Polymers
, edited by
G. V.
Vinogradov
and
A. Y.
Malkin
(
Mir
,
Berlin
,
1980
).
60.
Stadler
,
F. J.
,
C.
Gabriel
, and
H.
Münstedt
, “
Influence of short-chain branching of polyethylenes on the temperature dependence of rheological properties in shear
,”
Macromol. Chem. Phys.
208
,
2449
2454
(
2007
).
61.
Carella
,
J. M.
, “
Comments on the paper ‘comparison of the rheological properties of metallocene-catalyzed and conventional high-density polyethylenes’ 1
,”
Macromolecules
29
,
8280
8281
(
1996
).
62.
Wasserman
,
S. H.
, and
W. W.
Graessley
, “
Prediction of linear viscoelastic response for entangled polyolefin melts from molecular weight distribution
,”
Polym. Eng. Sci.
36
,
852
861
(
1996
).
63.
Derlin
,
S.
, and
W.
Kaminsky
, “
Chain-walking olefin polymerizations with donor-substituted half-sandwich chromium complexes: ethylene/propylene copolymer look-alikes by polymerization of propylene
,”
Macromolecules
41
,
6280
6288
(
2008
).
64.
Trinkle
,
S.
, and
C.
Friedrich
, “
Van Gurp-Palmen-plot: A way to characterize polydispersity of linear polymers
,”
Rheol. Acta
40
,
322
328
(
2001
).
65.
Fetters
,
L. J.
,
D. J.
Lohse
, and
R. H.
Colby
,
Chain dimensions and entanglement spacings
, in
Physical Properties of Polymers Handbook
, edited by
J. E.
Mark
(
Springer
,
New York
,
2007
), pp.
447
454
.
66.
Larson
,
R. G.
,
T.
Sridhar
,
L. G.
Leal
,
G. H.
McKinley
,
A. E.
Likhtman
, and
T. C. B.
McLeish
, “
Definitions of entanglement spacing and time constants in the tube model
,”
J. Rheol.
47
,
809
818
(
2003
).
67.
Park
,
J. W.
,
J.
Yoon
,
J.
Cha
, and
H. S.
Lee
, “
Determination of molecular weight distribution and composition dependence of monomeric friction factors from the stress relaxation of ultrahigh molecular weight polyethylene gels
,”
J. Rheol.
59
,
1173
1189
(
2015
).
68.
van Gurp
,
M.
, and
J.
Palmen
, “
Time-temperature superposition for polymer blends
,”
Rheol. Bull.
67
,
5
8
(
1998
).
69.
Nobile
,
M. R.
, and
F.
Cocchini
, “
Predictions of linear viscoelastic properties for polydisperse entangled polymers
,”
Rheol. Acta
39
,
152
162
(
2000
).
70.
Milner
,
S. T.
, “
Relating the shear-thinning curve to the molecular weight distribution in linear polymer melts
,”
J. Rheol.
40
,
303
315
(
1996
).
71.
Likhtman
,
A. E.
, and
T. C. B.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
,
6332
6343
(
2002
).
72.
See supplementary material at https://doi.org/10.1122/1.5109481 for sample naming, HT-SEC traces and LVE data of multimodal PE blends. Further information is presented in the SI regarding obtained modeling parameters, MWD determined by modeling, and details concerning Mr calculation.

Supplementary Material

You do not currently have access to this content.