We perform a detailed theoretical study of the edge fracture instability, which commonly destabilizes the fluid-air interface during strong shear flows of entangled polymeric fluids, leading to unreliable rheological measurements. By means of direct nonlinear simulations, we map out phase diagrams showing the degree of edge fracture in the plane of the surface tension of the fluid-air interface and the imposed shear rate, within the Giesekus and Johnson–Segalman models, for different values of the nonlinear constitutive parameters that determine the dependencies on the shear rate of the shear and normal stresses. The threshold for the onset of edge fracture is shown to be relatively robust against variations in the wetting angle where the fluid-air interface meets the hard walls of the flow cell, whereas the nonlinear dynamics depend strongly on the wetting angle. We perform a linear stability calculation to derive an exact analytical expression for the onset of edge fracture, expressed in terms of the shear-rate derivative of the second normal stress difference, the shear-rate derivative of the shear stress (sometimes called the tangent viscosity), the jump in the shear stress across the interface between the fluid and the outside air, the surface tension of that interface, and the rheometer gap size. (The shear stress to which we refer is σ x y with x ^ being the flow direction and y ^ being the flow-gradient direction. The interface normal is in the vorticity direction z ^ .) Full agreement between our analytical calculation and nonlinear simulations is demonstrated. We also elucidate in detail the mechanism of edge fracture and finally suggest a new way in which it might be mitigated in experimental practice. We also suggest that, by containing the second normal stress difference, our criterion for the onset of edge fracture may be used as a means to determine that quantity experimentally. Some of the results in this paper were first announced in an earlier letter [E. J. Hemingway, H. Kusumaatmaja, and S. M. Fielding, Phys. Rev. Lett. 119, 028006 (2017)]. The present paper provides additional simulation results, calculational details of the linear stability analysis, and more detailed discussion of the significance and limitations of our findings.

1.
Hemingway
,
E. J.
,
H.
Kusumaatmaja
, and
S. M.
Fielding
, “
Edge fracture in complex fluids
,”
Phys. Rev. Lett.
119
,
028006
(
2017
).
2.
Snijkers
,
F.
, and
D.
Vlassopoulos
, “
Cone-partitioned-plate geometry for the ARES rheometer with temperature control
,”
J. Rheol.
55
,
1167
1186
(
2011
).
3.
Jensen
,
E. A.
, and
J. C.
Christiansen
, “
Measurements of first and second normal stress differences in a polymer melt
,”
J. Non-Newton. Fluid Mech.
148
,
41
46
(
2008
).
4.
Lee
,
C.-S.
,
B.
Tripp
, and
J.
Magda
, “
Does N1 or N2 control the onset of edge fracture?
,”
Rheol. Acta
31
,
306
308
(
1992
).
5.
Inn
,
Y. W.
,
K. F.
Wissbrun
, and
M. M.
Denn
, “
Effect of edge fracture on constant torque rheometry of entangled polymer solutions
,”
Macromolecules
38
,
9385
9388
(
2005
).
6.
Sui
,
C.
, and
G. B.
McKenna
, “
Instability of entangled polymers in cone and plate rheometry
,”
Rheol. Acta
46
,
877
888
(
2007
).
7.
Schweizer
,
T.
, and
M.
Stöckli
, “
Departure from linear velocity profile at the surface of polystyrene melts during shear in cone-plate geometry
,”
J. Rheol.
52
,
713
727
(
2008
).
8.
Mattes
,
K.
,
R.
Vogt
, and
C.
Friedrich
, “
Analysis of the edge fracture process in oscillation for polystyrene melts
,”
Rheol. Acta
47
,
929
942
(
2008
).
9.
Dai
,
S.-C.
,
E.
Bertevas
,
F.
Qi
, and
R. I.
Tanner
, “
Viscometric functions for noncolloidal sphere suspensions with Newtonian matrices
,”
J. Rheol.
57
,
493
510
(
2013
).
10.
Mall-Gleissle
,
S. E.
,
W.
Gleissle
,
G. H.
McKinley
, and
H.
Buggisch
, “
The normal stress behaviour of suspensions with viscoelastic matrix fluids
,”
Rheol. Acta
41
,
61
76
(
2002
).
11.
Schweizer
,
T.
, “
Comparing cone-partitioned plate and cone-standard plate shear rheometry of a polystyrene melt
,”
J. Rheol.
47
,
1071
1085
(
2003
).
12.
Schweizer
,
T.
,
J.
van Meerveld
, and
H. C.
Öttinger
, “
Nonlinear shear rheology of polystyrene melt with narrow molecular weight distribution—Experiment and theory
,”
J. Rheol.
48
,
1345
1363
(
2004
).
13.
Meissner
,
J.
,
R.
Garbella
, and
J.
Hostettler
, “
Measuring normal stress differences in polymer melt shear flow
,”
J. Rheol.
33
,
843
864
(
1989
).
14.
Schweizer
,
T.
, and
W.
Schmidheiny
, “
A cone-partitioned plate rheometer cell with three partitions (CPP3) to determine shear stress and both normal stress differences for small quantities of polymeric fluids
,”
J. Rheol.
57
,
841
865
(
2013
).
15.
Costanzo
,
S.
,
G.
Ianniruberto
,
G.
Marrucci
, and
D.
Vlassopoulos
, “
Measuring and assessing first and second normal stress differences of polymeric fluids with a modular cone-partitioned plate geometry
,”
Rheol. Acta
57
,
363
376
(
2018
).
16.
Tanner
,
R.
, and
M.
Keentok
, “
Shear fracture in cone‐plate rheometry
,”
J. Rheol.
27
,
47
57
(
1983
).
17.
Keentok
,
M.
, and
S.-C.
Xue
, “
Edge fracture in cone-plate and parallel plate flows
,”
Rheol. Acta
38
,
321
348
(
1999
).
18.
Hatzikiriakos
,
S. G.
, “
Slip mechanisms in complex fluid flows
,”
Soft Matter
11
,
7851
7856
(
2015
).
19.
Hatzikiriakos
,
S. G.
, “
Wall slip of molten polymers
,”
Prog. Polym. Sci.
37
,
624
643
(
2012
).
20.
Johnson, Jr.
,
M.
, and
D.
Segalman
, “
A model for viscoelastic fluid behavior which allows non-affine deformation
,”
J. Non-Newton. Fluid Mech.
2
,
255
270
(
1977
).
21.
David Lu
,
C.-Y.
,
P. D.
Olmsted
, and
R.
Ball
, “
Effects of nonlocal stress on the determination of shear banding flow
,”
Phys. Rev. Lett.
84
,
642
(
2000
).
22.
Skorski
,
S.
, and
P. D.
Olmsted
, “
Loss of solutions in shear banding fluids driven by second normal stress differences
,”
J. Rheol.
55
,
1219
1246
(
2011
).
23.
Hemingway
,
E. J.
, and
S. M.
Fielding
, “
Edge-induced shear banding in entangled polymeric fluids
,”
Phys. Rev. Lett.
120
,
138002
(
2018
).
24.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newton. Fluid Mech.
11
,
69
109
(
1982
).
25.
Likhtman
,
A. E.
, and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–Poly equation
,”
J. Non-Newton. Fluid Mech.
114
,
1
12
(
2003
).
26.
Bray
,
A. J.
, “
Theory of phase-ordering kinetics
,”
Adv. Phys.
51
,
481
587
(
2002
).
27.
Kusumaatmaja
,
H.
,
E. J.
Hemingway
, and
S. M.
Fielding
, “
Moving contact line dynamics: from diffuse to sharp interfaces
,”
J. Fluid Mech.
788
,
209
227
(
2016
).
28.
Yue
,
P.
,
C.
Zhou
, and
J. J.
Feng
, “
Sharp-interface limit of the Cahn–Hilliard model for moving contact lines
,”
J. Fluid Mech.
645
,
279
294
(
2010
).
29.
Dong
,
S.
, “
On imposing dynamic contact-angle boundary conditions for wall-bounded liquid–gas flows
,”
Comput. Methods Appl. Mech. Eng.
247–248
,
179
200
(
2012
).
30.
Pozrikidis
,
C.
,
Introduction to Theoretical and Computational Fluid Dynamics
(
Oxford University
,
2011
).
31.
Press
,
W. H.
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
(
Cambridge University
,
Cambridge, UK
,
1992
), Vol. 2.
32.
Porteous
,
K. C.
, and
M. M.
Denn
, “
Linear stability of plane Poiseuille flow of viscoelastic liquids
,”
Trans. Soc. Rheol.
16
,
295
308
(
1972
).
33.
Hinch
,
E. J.
,
O.
Harris
, and
J. M.
Rallison
, “
The instability mechanism for two elastic liquids being co-extruded
,”
J. Non-Newton. Fluid. Mech.
43
,
311
324
(
1992
).
34.
Wilson
,
H. J.
, and
J. M.
Rallison
, “
Short wave instability of co-extruded elastic liquids with matched viscosities
,”
J. Non-Newton. Fluid Mech.
72
,
237
251
(
1997
).
35.
Nghe
,
P.
,
S.
Fielding
,
P.
Tabeling
, and
A.
Ajdari
, “
Interfacially driven instability in the microchannel flow of a shear-banding fluid
,”
Phys. Rev. Lett.
104
,
248303
(
2010
).
36.
Denn
,
M. M.
, and
J. F.
Morris
, “
Rheology of non-brownian suspensions
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
203
228
(
2014
).
37.
Li
,
Y.
, and
G. B.
McKenna
, “
Startup shear of a highly entangled polystyrene solution deep into the nonlinear viscoelastic regime
,”
Rheol. Acta
54
,
771
777
(
2015
).
38.
Li
,
Y.
,
M.
Hu
,
G. B.
McKenna
,
C. J.
Dimitriou
,
G. H.
McKinley
,
R. M.
Mick
,
D. C.
Venerus
, and
L. A.
Archer
, “
Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions
,”
J. Rheol.
57
,
1411
1428
(
2013
).
39.
Wang
,
S.-Q.
,
G.
Liu
,
S.
Cheng
,
P. E.
Boukany
,
Y.
Wang
, and
X.
Li
, “
Letter to the Editor: Sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers
,”
J. Rheol.
58
,
1059
1069
(
2014
).
40.
Li
,
Y.
,
M.
Hu
,
G. B.
McKenna
,
C. J.
Dimitriou
,
G. H.
McKinley
,
R. M.
Mick
,
D. C.
Venerus
, and
L. A.
Archer
, “
Sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers
,”
J. Rheol.
58
,
1071
1082
(
2014
).
41.
Boukany
,
P. E.
,
S.-Q.
Wang
,
S.
Ravindranath
, and
L. J.
Lee
, “
Shear banding in entangled polymers in the micron scale gap: a confocal-rheoscopic study
,”
Soft Matter
11
,
8058
8068
(
2015
).
You do not currently have access to this content.