A laminar Poiseuille flow of a dilute cationic surfactant solution produces threadlike shear-induced structures (SISs) that are dispersed densely within a near-wall layer. This near-wall SIS layer behaves like a coherent gel within the jet. When the jet impinges on the wall, it is found to anomalously curve aside from the wall rather than impinging straight. With an increase in the flow rate, this curved jet becomes a straight impinging jet, and the SIS layer is broken down by compression at the wall stagnation point. The normal stress at the stagnation point is investigated as the critical condition for SIS breakdown and is represented as a function of the wall shear stress of the channel flow. The critical normal stress increases with the wall shear stress in the channel flow and then decreases rapidly above the critical wall shear stress. In addition to the gel-like coherent characteristics of the SIS layer, the macroscopic apparent viscosity of the SIS layer is investigated and estimated to be 2.5–5 mPa s in the channel flow. The SIS layer shows a rather low macroscopic apparent viscosity despite its gel-like coherent behavior.

1.
Rehage
,
H.
, and
H.
Hoffmann
, “
Shear induced phase transitions in highly dilute aqueous detergent solutions
,”
Rheol. Acta
21
,
561
563
(
1982
).
2.
Rehage
,
H.
,
I.
Wunderlich
, and
H.
Hoffmann
, “
Shear induced phase transitions in dilute aqueous surfactant solutions
,”
Prog. Colloid Polym. Sci.
72
,
51
59
(
1986
).
3.
Ohlendorf
,
D.
,
W.
Interthal
, and
H.
Hoffmann
, “
Surfactant systems for drag reduction: Physico-chemical properties and rheological behaviour
,”
Rheol. Acta
25
(
5
),
468
486
(
1986
).
4.
Zakin
,
J. L.
,
B.
Lu
, and
H. W.
Bewersdorff
, “
Surfactant drag reduction
,”
Rev. Chem. Eng.
14
(
4–5
),
253
320
(
1998
).
5.
Lerouge
,
S.
, and
J.-F.
Berret
, “
Shear-induced transitions and instabilities in surfactant wormlike micelles
,” in
Polymer Characterization
, edited by K. Dusek and J. F, Joanny (Springer, Berlin, Heidelberg,
2009
), Vol. 230.
6.
Liu
,
C. H.
, and
D. J.
Pine
, “
Shear-induced gelation and fracture in micellar solutions
,”
Phys. Rev. Lett.
77
(
10
),
2121
2124
(
1996
).
7.
Boltenhagen
,
P.
,
Y.
Hu
,
E. F.
Matthys
, and
D. J.
Pine
, “
Inhomogeneous structure formation and shear-thickening in worm-like micellar solutions
,”
Europhys. Lett.
38
(
5
),
389
394
(
1997
).
8.
Boltenhagen
,
P.
,
Y.
Hu
,
E. F.
Matthys
, and
D. J.
Pine
, “
Observation of bulk phase separation and coexistence in a sheared micellar solution
,”
Phys. Rev. Lett.
79
(
12
),
2359
2362
(
1997
).
9.
Hu
,
Y. T.
,
P.
Boltenhagen
,
E.
Matthys
, and
D. J.
Pine
, “
Shear thickening in low-concentration solutions of wormlike micelles. II. Slip, fracture, and stability of the shear-induced phase
,”
J. Rheol.
42
(
5
),
1209
1226
(
1998
).
10.
Hu
,
Y. T.
,
P.
Boltenhagen
, and
D. J.
Pine
, “
Shear thickening in low-concentration solutions of wormlike micelles. I. Direct visualization of transient behavior and phase transitions
,”
J. Rheol.
42
(
5
),
1185
1208
(
1998
).
11.
Dehmoune
,
J.
,
S.
Manneville
, and
J. P.
Decruppe
, “
Local velocity measurements in the shear-thickening transition of dilute micellar solutions of surfactants
,”
Langmuir
27
(
3
),
1108
1115
(
2011
).
12.
Hu
,
H.
,
R. G.
Larson
, and
J. J.
Magda
, “
Measurement of wall-slip-layer rheology in shear-thickening wormy micelle solutions
,”
J. Rheol.
46
(
4
),
1001
1021
(
2002
).
13.
Hoffmann
,
H.
,
S.
Hoffmann
,
A.
Rauscher
, and
J.
Kalus
, “
Shear-induced transitions in micellar solution
,”
Prog. Colloid Polym. Sci.
84
,
24
35
(
1991
).
14.
Beaumont
,
J.
,
N.
Louvet
,
T.
Divoux
,
M. A.
Fardin
,
H.
Bodiguel
,
S.
Lerouge
,
S.
Mannevillebd
, and
A.
Colina
, “
Turbulent flows in highly elastic wormlike micelles
,”
Soft Matter
9
,
735
749
(
2013
).
15.
Tuan
,
N. A.
, and
H.
Mizunuma
, “
Advection of shear-induced surfactant threads and turbulent drag reduction
,”
J. Rheol.
57
(
6
),
1819
1832
(
2013
).
16.
Tuan
,
N. A.
,
Y.
Kobayashi
, and
H.
Mizunuma
, “
Turbid and transparent shear-induced structures in dilute cationic surfactant solutions
,”
J. Rheol.
61
(
1
),
83
91
(
2017
).
17.
Shaqfeh
,
E. S. G.
, “
Purely elastic instabilities in viscometric flows
,”
Annu. Rev. Fluid Mech.
28
,
129
185
(
1996
).
18.
Martin
,
H.
, “
Heat and mass transfer between impinging gas jets and solid surfaces
,”
Adv. Heat Transfer
13
,
1
60
(
1977
).
19.
Tu
,
C. V.
, and
D. H.
Wood
, “
Wall pressure and shear stress measurements beneath an impinging jet
,”
Exp. Therm. Fluid Sci.
13
,
364
373
(
1996
).
20.
Timoshenko
,
S. P.
, and
J. M.
Gere
,
Theory of Elastic Stability
, 2nd ed. (
McGraw-Hill
Kogakusha, Tokyo,
1961
), p.
355
.
21.
Bewersdorff
,
H. W.
, and
D.
Ohlendorf
, “
The behaviour of drag-reducing cationic surfactant solutions
,”
Colloid Polym. Sci.
266
,
941
953
(
1988
).
22.
Usui
,
H.
,
T.
Itoh
, and
T.
Saeki
, “
On pipe diameter effects in surfactant drag-reducing pipe flows
,”
Rheol. Acta
37
,
122
128
(
1998
).
23.
Tuan
,
N. A.
, and
H.
Mizunuma
, “
High-shear drag reduction of surfactant solutions
,”
J. Non-Newton. Fluid Mech.
198
,
71
77
(
2013
).
24.
Shu-peng
,
C. A. I.
, “
Drag reduction of a cationic surfactant solution and its shear stress relaxation
,”
J. Hydrodyn.
24
(
2
),
202
206
(
2012
).
25.
Bewersdorff
,
H. W.
,
B.
Frings
,
P.
Lindner
, and
R. C.
Oberthur
, “
The conformation of drag reducing micelles from small-angle-neutron-scattering experiments
,”
Rheol. Acta
25
,
642
646
(
1986
).
26.
See supplementary material at https://doi.org/10.1122/1.5099644 for its uniform structure in the x-direction. The experimental conditions are same as those of Fig. 7(b). The laser sheet optics and camera were moved in the x-direction to show the SIS flow to be uniform.

Supplementary Material

You do not currently have access to this content.