The effect of temperature on the apparent rheological properties of concentrated synthetic fiber suspensions was investigated experimentally. Aqueous suspensions of viscose rayon, acrylic, and nylon 6,6 fibers of various fiber concentrations, sizes, and shapes were used. At a fixed shear rate, the apparent viscosity of all the suspensions decreased reversibly with increasing temperature. The steady-state flow behavior is well described by the Bingham fluid model where the yield stress is a decreasing function of temperature and follows an Arrhenius dependence with an activation energy in the range of 2–80 kJ/mol, which is the same order of magnitude as that reported for 20 wt. % fibrous biomass suspensions below 55 °C. The fiber suspensions exhibited a negative plastic viscosity at low temperatures, and as the temperature was increased, the plastic viscosity became less negative. This temperature-dependent rheological behavior is qualitatively similar to that observed for concentrated fibrous biomass suspensions. The fiber suspensions formed heterogeneous networks where the state of aggregation depended on the experimental conditions and thus affected the macroscopic rheology.

1.
Stickel
,
J. J.
,
J. S.
Knutsen
,
M. W.
Liberatore
,
W.
Luu
,
D. W.
Bousfield
,
D. J.
Klingenberg
,
C. T.
Scott
,
T. W.
Root
,
M. R.
Ehrhardt
, and
T. O.
Monz
, “
Rheology measurements of a biomass slurry: An inter-laboratory study
,”
Rheol. Acta
48
,
1005
1015
(
2009
).
2.
Chase
,
W. C.
,
A.
Donatelli
, and
J. W.
Walkinshaw
, “
Effects of freeness and consistency on the viscosity of hardwood and softwood pulp suspensions
,”
Tappi J.
72
,
199
204
(
1989
).
3.
Pimenova
,
N. V.
, and
T. R.
Hanley
, “
Effect of corn stover concentration on rheological characteristics
,”
Appl. Biochem. Biotechnol.
114
,
347
360
(
2004
).
4.
Ehrhardt
,
M. R.
,
T. O.
Monz
,
T. W.
Root
,
R. K.
Connelly
,
C. T.
Scott
, and
D. J.
Klingenberg
, “
Rheology of dilute acid hydrolyzed corn stover at high solids concentration
,”
Appl. Biochem. Biotechnol.
160
,
1102
1115
(
2010
).
5.
Samaniuk
,
J. R.
,
J.
Wang
,
T. W.
Root
,
C. T.
Scott
, and
D. J.
Klingenberg
, “
Rheology of concentrated biomass
,”
Korea Aust. Rheol. J.
23
,
237
245
(
2011
).
6.
Samaniuk
,
J. R.
,
C. T.
Scott
,
T. W.
Root
, and
D. J.
Klingenberg
, “
Rheological modification of corn stover biomass at high solids concentrations
,”
J. Rheol.
56
,
649
665
(
2012
).
7.
Bennington
,
C. P. J.
,
R. J.
Kerekes
, and
J. R.
Grace
, “
The yield stress of fibre suspensions
,”
Can. J. Chem. Eng.
68
,
748
757
(
1990
).
8.
Dalpke
,
B.
, and
R.
Kerekes
, “
The influence of pulp properties on the apparent yield stress of flocculated fibre suspensions
,”
J. Pulp Pap. Sci.
31
,
39
43
(
2004
).
9.
Kerekes
,
R. J.
,
R. M.
Soszynski
, and
P. A.
Tam Doo
,
The flocculation of pulp fibres
, in
Transactions of the 8th Fundamental Research Symposium
, edited by
V. Punton
, Oxford, England
, September 1985 (
Mechanical Engineering Publications
,
London
,
1985
), p.
265
.
10.
Kerekes
,
R. J.
, “
Rheology of fiber suspensions in papermaking: An overview of recent research
,”
Nord. Pulp Pap. Res. J.
21
,
598
612
(
2006
).
11.
Knutsen
,
J. S.
, and
M. W.
Liberatore
, “
Rheology of high-solids biomass slurries for biorefinery applications
,”
J. Rheol.
53
,
877
892
(
2009
).
12.
Derakhshandeh
,
B.
,
S. G.
Hatzikiriakos
, and
C. P. J.
Bennington
, “
The apparent yield stress of pulp fiber suspensions
,”
J. Rheol.
54
,
1137
1154
(
2010
).
13.
Samaniuk
,
J. R.
,
C.
Tim Scott
,
T. W.
Root
, and
D. J.
Klingenberg
, “
The effect of high intensity mixing on the enzymatic hydrolysis of concentrated cellulose fiber suspensions
,”
Bioresour. Technol.
102
,
4489
4494
(
2011
).
14.
Switzer
,
L. H.
, and
D. J.
Klingenberg
, “
Rheology of sheared flexible fiber suspensions via fiber-level simulations
,”
J. Rheol.
47
,
759
778
(
2003
).
15.
Wang
,
J.
,
Mass transfer and rheology of fiber suspensions
,
Ph.D. thesis
,
University of Wisconsin
,
Madison
,
2013
.
16.
Bergman
,
J.
, and
N.
Takamura
, “
The correlation between the shear modulus of fiber networks and the individual fiber stiffness
,”
Sven. Papperstidn.
68
,
703
710
(
1965
).
17.
Almin
,
K. K.
,
P.
Biel
, and
D.
Wahren
, “
Relating the shear modulus of the fiber newtorks to the bulk average fibre stiffness
,”
Sven. Papperstidn.
70
,
772
774
(
1967
).
18.
Knutsen
,
J. S.
, and
M. W.
Liberatore
, “
Rheology modification and enzyme kinetics of high solids cellulosic slurries
,”
Energy Fuels
24
,
3267
3274
(
2010
).
19.
Samaniuk
,
J. R.
,
Measurement and modification of biomass rheological properties
,
Ph.D. thesis
,
University of Wisconsin
,
Madison
,
2012
.
20.
Zauscher
,
S.
,
Polymer mediated surface interactions in pulp fiber suspension rheology
,
Ph.D. thesis
,
University of Wisconsin
,
Madison
,
2000
.
21.
Zauscher
,
S.
,
C. T.
Scott
,
J. L.
Willett
, and
D. J.
Klingenberg
, “
Pulp extrusion for recyling wastepapers and paper mill sludges
,”
Tappi J.
83
,
62
(
2000
).
22.
Klingenberg
,
D. J.
,
T. W.
Root
,
S.
Burlawar
,
C. T.
Scott
,
K.
Bourne
,
R.
Gleisner
,
C.
Houtman
, and
V.
Subramaniam
, “
Rheometry of coarse biomass at high temperature and pressure
,”
Biomass Bioenergy
99
,
69
78
(
2017
).
23.
Mason
,
S. G.
, “
The flocculation of pulp suspensions and the formation of paper
,”
Tappi J.
33
,
440
444
(
1950
).
24.
Soszynski
,
R. M.
, and
R. J.
Kerekes
, “
Elastic interlocking of nylon fibers suspended in liquid Part 1: Nature of cohesion among fibers
,”
Nord. Pulp Pap. Res. J.
4
,
172
179
(
1988
).
25.
Soszynski
,
R. M.
, and
R. J.
Kerekes
, “
Elastic interlocking of nylon fibers suspended in liquid Part 2: Process of interlocking
,”
Nord. Pulp Pap. Res. J.
4
,
180
184
(
1988
).
26.
Kerekes
,
R. J.
, and
C. J.
Schell
, “
Characterization of fiber flocculation regimes by crowding factor
,”
J. Pulp Pap. Sci.
18
,
32
38
(
1992
).
27.
Mason
,
S. G.
, “
The flocculation of cellulose fiber suspensions
,”
Pulp Pap. Mag. Can.
49
,
99
104
(
1948
).
28.
Meyer
,
R.
, and
D.
Wahren
, “
On the elastic properties of three-dimensional fibre networks
,”
Sven. Papperstidn.
67
,
432
436
(
1964
).
29.
Schmid
,
C. F.
,
L. H.
Switzer
, and
D. J.
Klingenberg
, “
Simulations of fiber flocculation: Effects of fiber properties and interfiber friction
,”
J. Rheol.
44
,
781
809
(
2000
).
30.
Schmid
,
C. F.
, and
D.
Klingenberg
, “
Mechanical flocculation in flowing fiber suspensions
,”
Phys. Rev. Lett.
84
,
290
293
(
2000
).
31.
Switzer
,
L. H.
, and
D. J.
Klingenberg
, “
Flocculation in simulations of sheared fiber suspensions
,”
Int. J. Multiph. Flow
30
,
67
87
(
2004
).
32.
Schmid
,
C. F.
, and
D. J.
Klingenberg
, “
Properties of fiber flocs with frictional and attractive interfiber forces
,”
J. Colloid Interface Sci.
226
,
136
144
(
2000
).
33.
Switzer
,
L. H.
, and
D. J.
Klingenberg
, “
Simulations of fiber floc dispersion in linear flow fields
,”
Nord. Pulp Pap. Res. J.
18
,
141
144
(
2003
).
34.
Dodson
,
C. T. J.
, “
Fiber crowding, fiber contacts and fiber flocculation
,”
Tappi J.
79
,
211
219
(
1996
).
35.
Herrick
,
F. W.
,
R. L.
Casebier
,
J. K.
Hamilton
, and
K. R.
Sandberg
, “
Microfibrillated cellulose: Morphology and accessibility
,”
J. Appl. Polymer Sci.
37
,
797
813
(
1983
).
36.
Jia
,
X.
,
Y.
Chen
,
C.
Shi
,
Y.
Ye
,
M.
Abid
,
S.
Jabbar
,
P.
Wang
,
X.
Zeng
, and
T.
Wu
, “
Rheological properties of an amorphous cellulose suspension
,”
Food Hydrocoll.
39
,
27
33
(
2014
).
37.
Goodrich
,
J. E.
, and
R. S.
Porter
, “
A rheological interpretation of torque-rheometer data
,”
Polym. Eng. Sci.
7
,
45
51
(
1967
).
38.
Ehrhardt
,
M. R.
,
Rheology of biomass
,
M.S. thesis
,
University of Wisconsin
,
Madison
,
2008
.
39.
Bousmina
,
M.
,
A.
Ait-Kadi
, and
J. B.
Faisant
, “
Determination of shear rate and viscosity from batch mixer data
,”
J. Rheol.
43
,
415
433
(
1999
).
40.
Lischeske
,
J. J.
,
R. S.
Nelson
, and
J. J.
Stickel
, “
Benchtop methods for measuring the fraction of free liquid of biomass slurries
,”
Cellulose
21
,
2261
2269
(
2014
).
41.
Samaniuk
,
J. R.
,
C. T.
Scott
,
T. W.
Root
, and
D. J.
Klingenberg
, “
The influence of polymer adsorption, and fiber composition, on the rheology of aqueous suspensions of aspen, cotton, and corn stover pulps
,”
Biomass Bioenergy
103
,
47
54
(
2017
).
42.
Kitano
,
T.
, and
T.
Kataoka
, “
The rheology of suspensions of vinylon fibers in polymer liquids. I. Suspensions in polymer solutions
,”
Rheol. Acta
20
,
390
402
(
1981
).
43.
Kitano
,
T.
, and
T.
Kataoka
, “
The rheology of suspensions of vinylon fibers in polymer liquids. II. Suspensions in polymer solutions
,”
Rheol. Acta
20
,
403
415
(
1981
).
44.
Goto
,
S.
,
H.
Nagazono
, and
H.
Kato
, “
The flow behavior of fiber suspensions in Newtonian fluids and polymer solutions. I. Mechanical properties
,”
Rheol. Acta
129
,
119
129
(
1986
).
45.
Nawab
,
M. A.
, and
S. G.
Mason
, “
Viscosity of dilute suspensions of thread-like particles
,”
J. Phys. Chem.
62
,
1248
1253
(
1958
).
46.
Derakhshandeh
,
B.
,
R. J.
Kerekes
,
S. G.
Hatzikiriakos
, and
C. P. J.
Bennington
, “
Rheology of pulp fibre suspensions: A critical review
,”
Chem. Eng. Sci.
66
,
3460
3470
(
2011
).
47.
Kerekes
,
R. J.
, and
C. J.
Schell
, “
Effect of fiber length and coarsness on pulp flocculation
,”
Tappi J.
78
,
133
139
(
1995
).
48.
Thalen
,
N.
, and
D.
Wahren
, “
Shear modulus and ultimate strength of some paper pulp fiber networks
,”
Sven. Papperstidn.
67
,
259
263
(
1964
).
49.
Tapia
,
F.
,
S.
Shaikh
,
J. E.
Butler
,
O.
Pouliquen
, and
É.
Guazzelli
, “
Rheology of concentrated suspensions of non-colloidal rigid fibres
,”
J. Fluid Mech.
827
,
1
11
(
2017
).
50.
Petrie
,
C. J. S.
, “
The rheology of fibre suspensions
,”
J. Nonnewton. Fluid Mech.
87
,
369
402
(
1999
).
51.
Ganani
,
E.
, and
R. L.
Powell
, “
Suspensions of rodlike particles: Literature review and data correlations
,”
J. Compos. Mater.
19
,
194
215
(
1985
).
52.
Eberle
,
A. P. R.
,
D. G.
Baird
, and
P.
Wapperom
, “
Rheology of non-newtonian fluids containing glass fibers : A review of experimental literature
,”
Ind. Eng. Chem. Prod. Res. Dev.
47
,
3470
3488
(
2008
).
53.
Tozzi
,
E. J.
,
D. M.
Lavenson
,
M. J.
McCarthy
, and
R. L.
Powell
, “
Effect of fiber length, flow rate, and concentration on velocity profiles of cellulosic fiber suspensions
,”
Acta Mech.
224
,
2301
2310
(
2013
).
54.
Samaniuk
,
J. R.
,
C. T.
Scott
,
T. W.
Root
, and
D. J.
Klingenberg
, “
Effects of process variables on the yield stress of rheologically modified biomass
,”
Rheol. Acta
54
,
941
949
(
2015
).
55.
Switzer
,
L. H.
,
Simulating systems of flexible fibers
,
Ph.D. thesis
,
University of Wisconsin
,
Madison
,
2002
.
56.
Kanamaru
,
K.
, “
Stabilization of viscose rayon by heat treatment of ammoniacal preswelling bath
,”
J. Appl. Polym. Sci.
4
,
1
9
(
1960
).
57.
Reimschuessel
,
H. K.
, “
Relationships on the effect of water on glass transition temperature and Young’s modulus of nylon 6
,”
J. Polym. Sci. Polym. Chem. Ed.
16
,
1229
1236
(
1978
).
58.
Mark
,
J.
,
Polymer Data Handbook
(
Oxford University, New York
,
1999
).
59.
Howard
,
W. H.
, “
The glass temperatures of polyacrylonitrile and acrylonitrile-vinyl acetate copolymers
,”
J. Appl. Polym. Sci.
5
,
303
307
(
1961
).
60.
Bryant
,
G. M.
, and
A. T.
Walter
, “
Stiffness and resiliency of wet and dry fibers as a function of temperature
,”
Text. Res. J.
29
,
211
219
(
1959
).
61.
Ingamells
,
W.
, and
R. H.
Peters
, “
The effect of plasticizing compounds on acrylic fibers
,”
J. Appl. Polym. Sci.
20
,
41
54
(
1976
).
62.
Gupta
,
A. K.
, and
N.
Chand
, “
Glass transition in polyacrylonitrile analysis of dielectric relaxation data
,”
J. Polym. Sci. Polym. Phys. Ed.
18
,
1125
1136
(
1980
).
63.
Beghello
,
L.
,
The tendency of fibers to build flocs
,
Ph.D. thesis
,
Abo Akademia University
,
Turku, Finland
,
1998
.
64.
Forgacs
,
O. L.
, and
S. G.
Mason
, “
Particle motions in sheared suspensions X. Orbits of flexible threadlike particles
,”
J. Colloid Sci.
14
,
473
491
(
1959
).
65.
Goldsmith
,
H. L.
, and
S. G.
Mason
, “
The microrheology of dispersions
,” Rheology, edited by F. Eirich (Academic, Oxford, 1967), Vol. 4, pp. 85–201.
66.
Cox
,
R. G.
, “
The motion of long slender bodies in a viscous fluid. 2. Shear flow
,”
J. Fluid Mech.
45
,
625
657
(
1971
).
You do not currently have access to this content.