The steady state flow of a concentrated dispersion of starlike micelles above the colloidal glass transition concentration is interrogated by superimposing a small amplitude straining motion orthogonal to the main flow direction. Strain amplitude sweeps reveal that the linear response region of the orthogonal perturbation increases with increasing flow rate, consistent with a fluidization of the materials. Orthogonal dynamic frequency sweeps (ODFSs) are obtained for a wide range of shear rates probing the full flow curve. The shear-induced fluidization of the initially glassy suspension is more clearly evidenced by the appearance of a crossover frequency ωc in ODFS, which steadily increases, reflecting a faster structural relaxation under shear. The dependence of ωc on the shear rate is sublinear and follows a power law with an exponent of 0.8. We show that the shape of the orthogonal viscoelastic spectrum changes at a critical shear rate γ˙cr, indicative of a structural relaxation modulus that changes from exponential at lower shear rates to multistep with alternating exponential and power law response at higher shear rates. We finally provide a theoretical framework which explains the observed sublinear power law dependence of the crossover frequency and relates it with the shear rate dependence of the viscosity measured by the flow curve.

1.
Cates
,
M. E.
, and
M. R.
Evans
, Soft and Fragile Matter: Nonequilibrium Dynamics, Metastability and Flow (PBK) (
CRC, Institute of Physics
,
2000
).
2.
Mewis
,
J.
, and
N. J.
Wagner
, Colloidal Suspension Rheology (
Cambridge University, Cambridge
,
2012
).
3.
Larson
,
R. G.
, The Structure and Rheology of Complex Fluids (
Oxford University, New York
,
1999
).
4.
Snijkers
,
F.
,
R.
Pasquino
,
P. D.
Olmsted
, and
D.
Vlassopoulos
, “
Perspectives on the viscoelasticity and flow behavior of entangled linear and branched polymers
,”
J. Phys. Condens. Matter
27
,
473002
(
2015
).
5.
Lettinga
,
M. P.
,
P.
Holmqvist
,
P.
Ballesta
,
S.
Rogers
,
D.
Kleshchanok
, and
B.
Struth
, “
Nonlinear behavior of nematic platelet dispersions in shear flow
,”
Phys. Rev. Lett.
109
,
246001
(
2012
).
6.
López-Barrón
,
C. R.
,
L.
Porcar
,
A. P. R.
Eberle
, and
N. J.
Wagner
, “
Dynamics of melting and recrystallization in a polymeric micellar crystal subjected to large amplitude oscillatory shear flow
,”
Phys. Rev. Lett.
108
,
258301
(
2012
).
7.
Amann
,
C. P.
,
D.
Denisov
,
M. T.
Dang
,
B.
Struth
,
P.
Schall
, and
M.
Fuchs
, “
Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory
,”
J. Chem. Phys.
143
,
034505
(
2015
).
8.
Koumakis
,
N.
,
J. F.
Brady
, and
G.
Petekidis
, “
Complex oscillatory yielding of model hard-sphere glasses
,”
Phys. Rev. Lett.
110
,
178301
(
2013
).
9.
Koumakis
,
N.
,
M.
Laurati
,
S. U.
Egelhaaf
,
J. F.
Brady
, and
G.
Petekidis
, “
Yielding of hard-sphere glasses during start-up shear
,”
Phys. Rev. Lett.
108
,
098303
(
2012
).
10.
de Silva
,
J. P.
,
A. S.
Poulos
,
B.
Pansu
,
P.
Davidson
,
B.
Kasmi
,
D.
Petermann
,
S.
Asnacios
,
F.
Meneau
, and
M.
Impéror
, “
Rheological behaviour of polyoxometalate-doped lyotropic lamellar phases
,”
Eur. Phys. J. E Soft Matter
34
,
4
(
2011
).
11.
Nania
,
M.
,
P.
Lapham
,
R. M.
Miller
,
A. J.
Smith
,
H.
Tantawy
,
J.
Caragay
,
J.
Gummel
,
O.
Ces
,
E. S. J.
Robles
, and
J. T.
Cabral
, “
Microfluidic SAXS study of lamellar and multilamellar vesicle phases of linear sodium alkylbenzenesulfonate surfactant with intrinsic isomeric distribution
,”
Langmuir
32
,
5852
5861
(
2016
).
12.
Porcar
,
L.
, “
Flow-SANS and rheo-SANS applied to soft matter
,”
Curr. Opin. Colloid Interface Sci.
17
,
33
43
(
2012
).
13.
Pusey
,
P. N.
, in Liquids, Freezing and Glass Transition, edited by J.-P. Hansen, D. Levesque, and J. Zinn-Justin (
Elsevier Science, B.V.
,
1991
).
14.
van Megen
,
W.
, “
Observation of a glass transition in suspensions of spherical colloidal particles
,”
Phys. Rev. Lett.
59
,
2083
2086
(
1987
).
15.
Wyss
,
H. M.
,
A.
Fernandez-Nieves
,
K.
Miyazaki
,
Z.
Hu
,
D. R.
Reichman
, and
D. A.
Weitz
, “
Soft colloids make strong glasses
,”
Nature
462
,
83
86
(
2009
).
16.
Koumakis
,
N.
,
A.
Pamvouxoglou
,
A. S.
Poulos
, and
G.
Petekidis
, “
Direct comparison of the rheology of model hard and soft particle glasses
,”
Soft Matter
8
,
4271
4284
(
2012
).
17.
Cloitre
,
M.
, “
Tunable rheology of dense soft deformable colloids
,”
Curr. Opin. Colloid Interface Sci.
19
,
561
574
(
2014
).
18.
Eckert
,
T.
, and
E.
Bartsch
, “
Re-entrant glass transition in a colloid-polymer mixture with depletion attractions
,”
Phys. Rev. Lett.
89
,
125701
(
2002
).
19.
Puertas
,
A. M.
,
J.
Bergenholtz
,
S. U.
Egelhaaf
,
A.
Moussaíd
,
P. N.
Pusey
,
A. B.
Schofield
,
M. E.
Cates
,
M.
Fuchs
, and
W. C. K.
Poon
, “
Multiple glassy states in a simple model system
,”
Science
296
,
104
106
(
2002
).
20.
Weitz
,
D. A.
, “
Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition
,”
Phys. Rev. Lett.
75
,
2770
2773
(
1995
).
21.
Richtering
,
W.
, “
Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres
,”
J. Chem. Phys.
111
,
1705
1711
(
1999
).
22.
Vlassopoulos
,
D.
, and
P. N.
Pusey
, “
Yielding and flow of sheared colloidal glasses
,”
J. Phys. Condens. Matter
16
,
S3955
S3963
(
2004
).
23.
Chikkadi
,
V.
,
G.
Wegdam
,
D.
Bonn
,
B.
Nienhuis
, and
P.
Schall
, “
Long-range strain correlations in sheared colloidal glasses
,”
Phys. Rev. Lett.
107
,
198303
(
2011
).
24.
Besseling
,
R.
,
L.
Isa
,
P.
Ballesta
,
G.
Petekidis
,
M. E.
Cates
, and
W. C. K.
Poon
, “
Shear banding and flow-concentration coupling in colloidal glasses
,”
Phys. Rev. Lett.
105
,
268301
(
2010
).
25.
Weitz
,
D. A.
, and
F.
Spaepen
, “
Structural rearrangements that govern flow in colloidal glasses
,”
Science
318
,
1895
1899
(
2007
).
26.
Wyss
,
H. M.
,
D. A.
Weitz
, and
D. R.
Reichman
, “
Nonlinear viscoelasticity of metastable complex fluids
,”
Europhys. Lett.
75
,
915
921
(
2006
).
27.
Brader
,
J. M.
,
M.
Siebenbürger
,
M.
Ballauff
,
K.
Reinheimer
,
M.
Wilhelm
,
S. J.
Frey
,
F.
Weysser
, and
M.
Fuchs
, “
Nonlinear response of dense colloidal suspensions under oscillatory shear: Mode-coupling theory and Fourier transform rheology experiments
,”
Phys. Rev. E
82
,
061401
(
2010
).
28.
Petekidis
,
G.
,
A.
Moussaïd
, and
P. N.
Pusey
, “
Rearrangements in hard-sphere glasses under oscillatory shear strain
,”
Phys. Rev. E
66
,
051402
(
2002
).
29.
Denisov
,
D. V.
,
M. T.
Dang
,
B.
Struth
,
A.
Zaccone
,
G. H.
Wegdam
, and
P.
Schall
, “
Sharp symmetry-change marks the mechanical failure transition of glasses
,”
Sci. Rep.
5
,
14359
(
2015
).
30.
Kawasaki
,
T.
, and
L.
Berthier
, “
Macroscopic yielding in jammed solids is accompanied by a nonequilibrium first-order transition in particle trajectories
,”
Phys. Rev. E
94
,
022615
(
2016
).
31.
Jacob
,
A. R.
,
A. S.
Poulos
,
S.
Kim
,
J.
Vermant
, and
G.
Petekidis
, “
Convective cage release in model colloidal glasses
,”
Phys. Rev. Lett.
115
,
218301
(
2015
).
32.
Cloitre
,
M.
,
R.
Borrega
,
F.
Monti
, and
L.
Leibler
, “
Glassy dynamics and flow properties of soft colloidal pastes
,”
Phys. Rev. Lett.
90
,
068303
(
2003
).
33.
Erwin
,
B. M.
,
M.
Cloitre
,
M.
Gauthier
, and
D.
Vlassopoulos
, “
Dynamics and rheology of colloidal star polymers
,”
Soft Matter
6
,
2825
2833
(
2010
).
34.
Mohan
,
L.
,
C.
Locatelli-Champagne
,
M.
Cloitre
, and
R. T.
Bonnecaze
, “
A micromechanical model to predict the flow of soft particle glasses
,”
Nat. Mater.
10
,
838
843
(
2011
).
35.
Vlassopoulos
,
D.
,
A.
Munam
, and
M.
Gauthier
, “
Depletion gels from dense soft colloids: Rheology and thermoreversible melting
,”
J. Rheol.
58
,
1441
1462
(
2014
).
36.
Mohanty
,
P. S.
,
S.
Nöjd
,
K.
van Gruijthuijsen
,
J. J.
Crassous
,
M.
Obiols-Rabasa
,
R.
Schweins
,
A.
Stradner
, and
P.
Schurtenberger
, “
Interpenetration of polymeric microgels at ultrahigh densities
,”
Sci. Rep.
7
,
1487
(
2017
).
37.
van de Laar
,
T.
,
J.
van der Gucht
,
D.
Vlassopoulos
, and
J.
Sprakel
, “
Fragility and strength in nanoparticle glasses
,”
ACS Nano
11
,
6755
6763
(
2017
).
38.
Fuchs
,
M.
,
H.
Winter
, and
M.
Ballauff
, “
Viscoelasticity and shear flow of concentrated, noncrystallizing colloidal suspensions: Comparison with mode-coupling theory
,”
J. Rheol.
53
,
707
726
(
2009
).
39.
Petekidis
,
G.
, “
Effects of particle softness on the rheology and yielding of colloidal glasses
,”
Rheol. Acta
47
,
579
590
(
2008
).
40.
Pellet
,
C.
,
M.
Cloitre
, and
R.
Bonnecaze
, “
Local mobility and microstructure in periodically sheared soft particle glasses and their connection to macroscopic rheology
,”
J. Rheol.
57
,
1023
1046
(
2013
).
41.
Simmons
,
J. M.
, “
A servo-controlled rheometer for measurement of the dynamic modulus of viscoelastic liquids
,”
J. Sci. Instrum.
43
,
887
892
(
1966
).
42.
Tanner
,
R. I.
, “
Comparative studies of some simple viscoelastic theories
,”
Trans. Soc. Rheol.
12
,
155
182
(
1968
).
43.
Mewis
,
J.
, and
G.
Schoukens
, “
Mechanical spectroscopy of colloidal dispersions
,”
Faraday Discuss. Chem. Soc.
65
,
58
64
(
1978
).
44.
van den Ende
,
D.
,
C.
Blom
,
E. G.
Altena
,
G. J.
Beukema
, and
J.
Mellema
, “
A sensitive dynamic viscometer for measuring the complex shear modulus in a steady shear flow using the method of orthogonal superposition
,”
Rheol. Acta
34
,
606
621
(
1995
).
45.
Moldenaers
,
P.
,
J.
Mewis
,
M.
Ellis
, and
R.
Garritano
, “
Orthogonal superposition measurements using a rheometer equipped with a force rebalanced transducer
,”
Rev. Sci. Instrum.
68
,
4090
4096
(
1997
).
46.
Walker
,
L.
,
P.
Moldenaers
, and
J.
Mewis
, “
Orthogonal versus parallel superposition measurements
,”
J. Nonnewton. Fluid Mech.
79
(
2–3
),
173
189
(
1998
).
47.
Mewis
,
J.
,
C.
Clasen
, and
J.
Vermant
, “
Superposition rheometry of a wormlike micellar fluid
,”
Rheol. Acta
52
,
727
740
(
2013
).
48.
Hendricks
,
J.
,
C.
Clasen
, and
J. P.
Rothstein
, “
A comparison of linear and branched wormlike micelles using large amplitude oscillatory shear and orthogonal superposition rheology
,”
J. Rheol.
60
,
1331
1346
(
2016
).
49.
Kim
,
S.
,
T.
Schweizer
,
B.
Schroyen
,
C.
Clasen
,
J.
Mewis
, and
J.
Vermant
, “
Superposition rheology and anisotropy in rheological properties of sheared colloidal gels
,”
J. Rheol.
61
,
1035
1048
(
2017
).
50.
Kim
,
S.
,
J.
Hendricks
,
C.
Clasen
, and
K. H.
Ahn
, “
Orthogonal superposition rheometry of colloidal gels: Time-shear rate superposition
,”
Soft Matter
14
,
8651
8659
(
2018
).
51.
Ness
,
C.
,
M. E.
Cates
,
J.
Sun
, and
I.
Cohen
, “
Tunable shear thickening in suspensions
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
10774
10778
(
2016
).
52.
Briels
,
W. J.
, “
Coarse-grained simulations of elongational viscosities, superposition rheology and shear banding in model core–shell systems
,”
Macromol. Theory Simul.
16
,
742
754
(
2007
).
53.
Marrucci
,
G.
, “
Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule
,”
J. Nonnewton. Fluid Mech.
62
,
279
289
(
1996
).
54.
Marrucci
,
G.
, “
On compatibility of the Cox-Merz rule with the model of Doi and Edwards
,”
J. Nonnewton. Fluid Mech.
65
,
241
246
(
1996
).
55.
Marrucci
,
G.
, “
Convective constraint release (CCR) revisited
,”
J. Rheol.
58
,
89
102
(
2014
).
56.
Camargo
,
M.
,
J.
Stellbrink
,
J.
Allgaier
,
A.
Radulescu
,
P.
Lindner
,
E.
Zaccarelli
,
C. N.
Likos
, and
D.
Richter
, “
Dynamic phase diagram of soft nanocolloids
,”
Nanoscale
7
,
13924
13934
(
2015
).
57.
Hadjichristidis
,
N.
,
M.
Pitsikalis
,
H.
Iatrou
,
P.
Driva
,
G.
Sakellariou
, and
M.
Chatzichristidiin
, in Polymer Science: A Comprehensive Reference, edited by K. Matyjaszewski and M. Müller (Elsevier, Amsterdam, 2012), pp. 29–111.
58.
Stiakakis
,
E.
,
D.
Vlassopoulos
,
G.
Fytas
, and
J.
Roovers
, “
Reversible thermal gelation in star polymers: An alternative route to jamming of soft matter
,”
Macromolecules
34
,
8216
8223
(
2001
).
59.
Jucknischke
,
O.
,
D.
Richter
,
J.
Roovers
,
L.-L.
Zhou
,
P. M.
Toporowski
,
L. J.
Fetters
,
J. S.
Huang
,
M. Y.
Lin
, and
N.
Hadjichristidis
, “
Structural investigation of star polymers in solution by small-angle neutron scattering
,”
Macromolecules
27
,
3821
3829
(
1994
).
60.
Stellbrink
,
J.
, and
G.
Petekidis
, “
Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS)
,”
J. Rheol.
54
,
1219
1242
(
2010
).
61.
Stellbrink
,
J.
, and
G.
Petekidis
, “
Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear
,”
Rheol. Acta
52
,
785
800
(
2013
).
62.
Renou
,
F.
,
A. R.
Jacob
,
N.
Koumakis
, and
G.
Petekidis
, “
Large amplitude oscillatory shear (LAOS) in model colloidal suspensions and glasses: Frequency dependence
,”
Rheol. Acta
54
,
715
724
(
2015
).
63.
Poppe
,
A.
,
L.
Willner
, and
D.
Richter
, “
Synthesis and characterization of poly[1,4-isoprene-b-(ethylene oxide)] and poly[ethylene-co-propylene-b-(ethylene oxide)] block copolymers
,”
Macromolecules
30
,
1582
1586
(
1997
).
64.
Laurati
,
M.
,
J.
Stellbrink
,
R.
Lund
,
L.
Willner
,
D.
Richter
, and
E.
Zaccarelli
, “
Starlike micelles with starlike interactions: A quantitative evaluation of structure factors and phase diagram
,”
Phys. Rev. Lett.
94
,
195504
(
2005
).
65.
Rother
,
G.
,
M.
Laurati
,
R.
Lund
,
L.
Willner
, and
D.
Richter
, “
Poly(ethylene-alt-propylene)-poly(ethylene oxide) diblock copolymer micelles: A colloidal model system with tunable softness
,”
J. Phys. Condens. Matter
16
,
S3821
S3834
(
2004
).
66.
Lund
,
R.
,
L.
Willner
,
J.
Stellbrink
,
P.
Lindner
, and
D.
Richter
, “
Logarithmic chain-exchange kinetics of diblock copolymer micelles
,”
Phys. Rev. Lett.
96
,
068302
(
2006
).
67.
Petekidis
,
G.
,
B.
Erwin
,
M.
Cloitre
, and
D.
Vlassopoulos
, “
Ageing and yield behaviour in model soft colloidal glasses
,”
Phil. Trans. R. Soc. Lond. A
367
,
5051
5071
(
2009
).
68.
Petekidis
,
G.
,
D.
Vlassopoulos
,
S. U.
Egelhaaf
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Yielding behavior of repulsion- and attraction-dominated colloidal glasses
,”
J. Rheol.
52
,
649
676
(
2008
).
69.
Wagner
,
N. J.
, and
D.
Vlassopoulos
, “
Viscoelasticity and shear melting of colloidal star polymer glasses
,”
J. Rheol.
51
,
297
316
(
2007
).
70.
Ramos
,
L.
, “
Slow dynamics in glassy soft matter
,”
J. Phys. Condens. Matter
17
,
R253
R285
(
2005
).
71.
Semenov
,
A. N.
,
D.
Vlassopoulos
, and
J.
Roovers
, “
Viscoelastic response of hyperstar polymers in the linear regime
,”
J. Chem. Phys.
111
,
1753
1759
(
1999
).
72.
Rubinstein
,
M.
, and
R. H.
Colby
, Polymer Physics (
Oxford University, New York
, 2003).
73.
Eisenmann
,
C.
,
C.
Kim
,
J.
Mattsson
, and
D. A.
Weitz
, “
Shear melting of a colloidal glass
,”
Phys. Rev. Lett.
104
,
035502
(
2010
).
74.
Fuchs
,
M.
, and
M. E.
Cates
, “
Theory of nonlinear rheology and yielding of dense colloidal suspensions
,”
Phys. Rev. Lett.
89
,
248304
(
2002
).
75.
Cates
,
M. E.
, “
Schematic models for dynamic yielding of sheared colloidal glasses
,”
Faraday Discuss.
123
,
267
286
(
2003
).
76.
Besseling
,
R.
,
E. R.
Weeks
,
A. B.
Schofield
, and
W. C. K.
Poon
, “
Three-dimensional imaging of colloidal glasses under steady shear
,”
Phys. Rev. Lett.
99
,
028301
(
2007
).
77.
Wyss
,
H. M.
,
K.
Miyazaki
,
J.
Mattsson
,
Z.
Hu
,
D. R.
Reichman
, and
D. A.
Weitz
, “
Strain-rate frequency superposition: A rheological probe of structural relaxation in soft materials
,”
Phys. Rev. Lett.
98
,
238303
(
2007
).
78.
Rogers
,
S. A.
,
M.
Cloitre
, and
D.
Vlassopoulos
, “
Examining the validity of strain-rate frequency superposition when measuring the linear viscoelastic properties of soft materials
,”
J. Rheol.
54
,
187
195
(
2010
).
79.
Benyahia
,
L.
, “
Shear flow and large strain oscillation of dense polymeric micelle suspension
,”
Macromolecules
38
,
9794
9802
(
2005
).
80.
Yang
,
J.
, and
K. S.
Schweizer
, “
Tunable dynamic fragility and elasticity in dense suspensions of many-arm-star polymer colloids
,”
Europhys. Lett.
90
,
66001
(
2010
).
81.
See supplementary material at https://doi.org/10.1122/1.5086022 for orthogonal superposition on a different volume fraction of star-like micelles in the concentrated regime.
82.
Saltzman
,
E. J.
, “
Entropic barriers, activated hopping, and the glass transition in colloidal suspensions
,”
J. Chem. Phys.
119
,
1181
1196
(
2003
).
83.
Saltzman
,
E. J.
, “
Activated hopping, barrier fluctuations, and heterogeneity in glassy suspensions and liquids
,”
J. Phys. Chem. B
108
,
19729
19741
(
2004
).
84.
Schweizer
,
K. S.
, “
Derivation of a microscopic theory of barriers and activated hopping transport in glassy liquids and suspensions
,”
J. Chem. Phys.
123
,
244501
(
2005
).
85.
Schweizer
,
K. S.
, and
G.
Yatsenko
, “
Collisions, caging, thermodynamics, and jamming in the barrier hopping theory of glassy hard sphere fluids
,”
J. Chem. Phys.
127
,
164505
(
2007
).
86.
Gotze
,
W.
,
S.
Hildebrand
, and
A.
Latz
, “
A theory for the beta-relaxation process near the liquid-to-glass crossover
,”
J. Phys. Condens. Matter
4
,
7709
7744
(
1992
).
87.
Di Leonardo
,
R.
,
G.
Ruocco
,
A.
Scala
, and
F.
Sciortino
, “
Saddles in the energy landscape probed by supercooled liquids
,”
Phys. Rev. Lett.
85
,
5356
5359
(
2000
).
88.
Cavagna
,
A.
, “
Supercooled liquids for pedestrians
,”
Phys. Rep.
476
,
51
124
(
2009
).
89.
Eyring
,
H.
, “
Viscosity, plasticity, and diffusion as examples of absolute reaction rates
,”
J. Chem. Phys.
4
,
283
291
(
1936
).
90.
Rottler
,
J.
, and
M. O.
Robbins
, “
Shear yielding of amorphous glassy solids: Effect of temperature and strain rate
,”
Phys. Rev. E
68
,
011507
(
2003
).
91.
Falk
,
M. L.
, and
J. S.
Langer
, “
Dynamics of viscoplastic deformation in amorphous solids
,”
Phys. Rev. E
57
,
7192
(
1998
).
92.
Kobelev
,
V.
, and
K. S.
Schweizer
, “
Strain softening, yielding, and shear thinning in glassy colloidal suspensions
,”
Phys. Rev. E
71
,
021401
(
2005
).
93.
Saltzman
,
E. J.
,
G.
Yatsenko
, and
K. S.
Schweizer
, “
Anomalous diffusion, structural relaxation and shear thinning in glassy hard sphere fluids
,”
J. Phys. Condens. Matter
20
,
244129
(
2008
).
94.
Bouchaud
,
J.-P.
, “
Models of traps and glass phenomenology
,”
J. Phys. A
29
,
3847
3869
(
1996
).
95.
Lequeux
,
F. M. C.
,
P.
Hébraud
, and
M. E.
Cates
, “
Rheology of soft glassy materials
,”
Phys. Rev. Lett.
78
,
2020
2023
(
1997
).
96.
Sollich
,
P.
, “
Rheological constitutive equation for a model of soft glassy materials
,”
Phys. Rev. E
58
,
738
759
(
1998
).
97.
Sollich
,
P.
, and
M. E.
Cates
, “
Aging and rheology in soft materials
,”
J. Rheol.
44
,
323
369
(
2000
).

Supplementary Material

You do not currently have access to this content.