Using room-temperature liquid metal particles as fillers in polymer composites (PCs) has recently been of utmost interest as the resultant composites exhibit improved toughness along with electrical and thermal conductivity. This paper presents a comprehensive study on shear and extensional rheology of the aqueous solutions (inks) of liquid EGaIn (eutectic gallium-indium) particle and poly(ethylene oxide)-based PCs. The rheology of this material system is compared to solid-state, rigid graphene-based PC inks having the same polymer matrix and filler concentrations. Results show that EGaIn-based PC inks exhibit unique rheological behavior that is inconsistent with that of the conventional rigid filler-based Polymer Nanocomposites (PNs), exemplified by increased extensional flow capability and elasticity. We postulate that the source of this behavior is the elastic nature of the oxide covered EGaIn particles. EGaIn-based PCs eliminate common trade-offs for conductive PCs and thus can have a significant impact in several technologies including solid-state energy storage and 3D-printing.

1.
Schuurman
,
W.
,
V.
Khristov
,
M. W.
Pot
,
P. R.
van Weeren
,
W. J.
Dhert
, and
J.
Malda
, “
Bioprinting of hybrid tissue constructs with tailorable mechanical properties
,”
Biofabrication
3
,
021001
(
2011
).
2.
Fernandes
,
N. J.
,
H.
Koerner
,
E. P.
Giannelis
, and
R. A.
Vaia
, “
Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges
,”
MRS Commun.
3
,
13
29
(
2013
).
3.
Spitalsky
,
Z.
,
D.
Tasis
,
K.
Papagelis
, and
C.
Galiotis
, “
Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties
,”
Prog. Polym. Sci.
35
,
357
401
(
2010
).
4.
Yang
,
C.
,
C. P.
Wong
, and
M. M. F.
Yuen
, “
Printed electrically conductive composites: conductive filler designs and surface engineering
,”
J. Mater. Chem. C
1
,
4052
4069
(
2013
).
5.
Dababneh
,
A. B.
, and
I. T.
Ozbolat
, “
Bioprinting technology: A current state-of-the-art review
,”
J. Manuf. Sci. Eng.
136
,
061016
(
2014
).
6.
Wei
,
M.
,
F.
Zhang
,
W.
Wang
,
P.
Alexandridis
,
C.
Zhou
, and
G.
Wu
, “
3D direct writing fabrication of electrodes for electrochemical storage devices
,”
J. Power Sources
354
,
134
147
(
2017
).
7.
Muth
,
J. T.
,
D. M.
Vogt
,
R. L.
Truby
,
Y.
Mengüç
,
D. B.
Kolesky
,
R. J.
Wood
, and
J. A.
Lewis
, “
Embedded 3D printing of strain sensors within highly stretchable elastomers
,”
Adv. Mater.
26
(
36
),
6307
6312
(
2014
).
8.
Nesaei
,
S.
,
Y.
Song
,
Y.
Wang
,
X.
Ruan
,
D.
Du
,
A.
Gozen
, and
Y.
Lin
, “
Micro additive manufacturing of glucose biosensors: A feasibility study
,”
Anal. Chim. Acta
1043
,
142
149
(
2018
).
9.
Chatterjee
,
T.
, and
R.
Krishnamoorti
, “
Rheology of polymer carbon nanotubes composites
,”
Soft Matter
9
,
9515
9529
(
2013
).
10.
Donnet
,
J. B.
, and
A.
Vidal
,
Carbon black: Surface Properties and Interactions with Elastomers
(
Springer
,
Berlin
,
1986
), pp.
103
127
.
11.
Cassagnau
,
P.
, “
Linear viscoelasticity and dynamics of suspensions and molten polymers filled with nanoparticles of different aspect ratios
,”
Polymer
54
,
4762
4775
(
2013
).
12.
Thomas
S.
,
R.
Muller
, and
J.
Abraham
,
Rheology and Processing of Polymer Nanocomposites
(
Wiley
,
Hoboken, NJ
,
2016
).
13.
Seah
,
T. H.
, and
M.
Pumera
, “
Platelet graphite nanofibers/soft polymer composites for electrochemical sensing and biosensing
,”
Sens. Actuators B Chem.
156
,
79
83
(
2011
).
14.
Li
,
Y. Y.
,
L. T.
Li
, and
B.
Li
, “
Direct ink writing of 3-3 piezoelectric composite
,”
J. Alloys Compd.
620
,
125
128
(
2015
).
15.
Hobbie
,
E. K.
, “
Shear rheology of carbon nanotube suspensions
,”
Rheol. Acta
49
,
323
334
(
2010
).
16.
Larsen
,
R. J.
,
M. D.
Dickey
,
G. M.
Whitesides
, and
D. A.
Weitz
, “
Viscoelastic properties of oxide-coated liquid metals
,”
J. Rheol.
53
,
1305
1326
(
2009
).
17.
Dickey
,
M. D.
,
R. C.
Chiechi
,
R. J.
Larsen
,
E. A.
Weiss
,
D. A.
Weitz
, and
G. M.
Whitesides
, “
Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature
,”
Adv. Funct. Mater.
18
,
1097
1104
(
2008
).
18.
Xu
,
Q.
,
N.
Oudalov
,
Q.
Guo
,
H. M.
Jaeger
, and
E.
Brown
, “
Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium
,”
Phys. Fluids
24
,
063101
(
2012
).
19.
Lu
,
Y.
,
Q.
Hu
,
Y.
Lin
,
D. B.
Pacardo
,
C.
Wang
,
W.
Sun
,
F. S.
Ligler
,
M. D.
Dickey
, and
Z.
Gu
, “
Transformable liquid-metal nanomedicine
,”
Nat. Commun.
6
,
10066
(
2015
).
20.
Boley
,
J. W.
,
E. L.
White
, and
R. K.
Kramer
, “
Mechanically sintered gallium-indium nanoparticles
,”
Adv. Mater.
27
(
14
),
2355
2360
(
2015
).
21.
Mohammed
,
M. G.
, and
R.
Kramer
, “
All-printed flexible and stretchable electronics
,”
Adv. Mater.
29
,
1604965
(
2017
).
22.
Lear
,
T. R.
,
S.-H.
Hyun
,
J. W.
Boley
,
E. L.
White
,
D. H.
Thompson
, and
R. K.
Kramer
, “
Liquid metal particle popping: Macroscale to nanoscale
,”
Extreme Mech. Lett.
13
,
126
(
2017
).
23.
Meng Chen
,
X.
,
G.
Tao Fei
,
X.
Feng Li
,
K.
Zheng
, and
L.
De Zhang
, “
Metastable phases in gallium indium eutectic alloy particles and their size dependence
,”
J. Phys. Chem. Solids
71
,
918
921
(
2010
).
24.
Kazem
,
N.
,
M. D.
Bartlett
, and
C.
Majidi
, “
Extreme toughening of soft materials with liquid metal
,”
Adv. Mater.
30
,
1706594
(
2018
).
25.
Boley
,
J. W.
,
E. L.
White
,
G. T. C.
Chiu
, and
R. K.
Kramer
, “
Direct writing of gallium-indium alloy for stretchable electronics
,”
Adv. Funct. Mater.
24
,
3501
3507
(
2014
).
26.
Zhu
,
S.
,
J.-H.
So
,
R.
Mays
,
S.
Desai
,
W. R.
Barnes
,
B.
Pourdeyhimi
, and
M. D.
Dickey
, “
Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core
,”
Adv. Funct. Mater.
23
,
2308
2314
(
2013
).
27.
Bartlett
,
M. D.
,
N.
Kazem
,
M. J.
Powell-Palm
,
X.
Huang
,
W.
Sun
,
J. A.
Malen
, and
C.
Majidi
, “
High thermal conductivity in soft elastomers with elongated liquid metal inclusions
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
2143
2148
(
2017
).
28.
Wang
,
J.
,
G.
Cai
,
S.
Li
,
D.
Gao
,
J.
Xiong
, and
P. S.
Lee
, “
Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal particles
,”
Adv. Mater.
30
,
1706157
(
2018
).
29.
Urk
,
D.
,
E.
Demir
,
O.
Bulut
,
D.
Cakiroglu
,
F.
Cebeci
,
M.
Lutfi Ovecoglu
, and
H.
Cebeci
, “
Understanding the polymer type and CNT orientation effect on the dynamic mechanical properties of high volume fraction CNT polymer nanocomposites
,”
Compos. Struct.
155
,
255
262
(
2016
).
30.
Potts
,
J. R.
,
D. R.
Dreyer
,
C. W.
Bielawski
, and
R. S.
Ruoff
, “
Graphene-based polymer nanocomposites
,”
Polymer
52
,
5
25
(
2011
).
31.
Colonna
,
S.
,
O.
Monticelli
,
J.
Gomez
,
C.
Novara
,
G.
Saracco
, and
A.
Fina
, “
Effect of morphology and defectiveness of graphene-related materials on the electrical and thermal conductivity of their polymer nanocomposites
,”
Polymer
102
,
292
300
(
2016
).
32.
Payne
,
A. R.
, “
The dynamic properties of carbon black loaded natural rubber vulcanizates. Part II
,”
J. Appl. Polym. Sci.
6
,
368
372
(
1962
).
33.
Knite
,
M.
,
V.
Teteris
,
A.
Kiploka
, and
J.
Kaupuzs
, “
Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials
,”
Sens. Actuators A Phys.
110
,
142
149
(
2004
).
34.
Khandavalli
,
S.
, and
J. P.
Rothstein
, “
Extensional rheology of shear-thickening fumed silica nanoparticles dispersed in an aqueous polyethylene oxide solution
,”
J. Rheol.
58
,
411
431
(
2014
).
35.
Nesaei
,
S.
,
M.
Rock
, and
Y.
Wang
, “
Additive manufacturing with conductive, viscoelastic polymer composites: Direct-ink-writing of electrolytic and anodic poly(ethylene oxide) composites
,”
J. Manuf. Sci. Eng. Addit.
139
(
11
),
111004
(
2017
).
36.
Dormann
J. L.
,
D.
Fiorani
, and
E.
Tronc
, “
Magnetic relaxation in fine-particle systems
,” in
Advances in Chemical Physics
(
Wiley
,
Hoboken, NJ
,
1997
), Vol. 98, pp.
283
494
.
37.
Wang
,
Y.
,
A.
Gozen
,
L.
Chen
, and
W.-H.
Zhong
, “
Gum-like nanocomposites as conformable, conductive, and adhesive electrode matrix for energy storage devices
,”
Adv. Energy Mater.
7
(
6
),
1601767
(
2017
).
38.
Morrison
,
F.
, An Introduction to Fluid Mechanics (
Cambridge University Press
,
Cambridge
,
2013
),
946
p.
39.
Mackley
,
M. R.
, and
R. P. G.
Rutgers
, “
Capillary rheometry
,”
Rheological Measurement
(
Springer Netherlands
,
Dordrecht
,
1998
), pp.
167
189
.
40.
Spiegelberg
,
S. H.
,
D. C.
Ables
, and
G. H.
McKinley
, “
The role of end-effects on measurements of extensional viscosity in filament stretching rheometers
,”
J. Nonnewton. Fluid Mech.
64
,
229
267
(
1996
).
41.
McKinley
,
G. H.
, Annual Rheology Reviews, HML Report Number 05-P-04 (
2005
).
42.
Anna
,
S. L.
, and
G. H.
McKinley
, “
Elasto-capillary thinning and breakup of model elastic liquids
,”
J. Rheol.
45
,
115
138
(
2001
).
43.
Arashiro
,
E. Y.
, and
N. R.
Demarquette
, “
Use of the pendant drop method to measure interfacial tension between molten polymers
,”
Mater. Res.
2
,
23
32
(
1999
).
44.
Aubry
,
T.
,
T.
Razafinimaro
, and
P.
Médéric
, “
Rheological investigation of the melt state elastic and yield properties of a polyamide-12 layered silicate nanocomposite
,”
J. Rheol.
49
,
425
440
(
2005
).
45.
Ma
,
J.
,
H.
Deng
, and
T.
Peijs
, “
Processing of poly(propylene)/carbon nanotube composites using scCO2-assisted mixing
,”
Macromol. Mater. Eng.
295
,
566
574
(
2010
).
46.
Kokkinis
,
D.
,
M.
Schaffner
, and
A. R.
Studart
, “
Multimaterial magnetically assisted 3D printing of composite materials
,”
Nat. Commun.
6
,
8643
(
2015
).
47.
Li
W.
,
F.
Li
,
H.
Li
,
M.
Su
,
M.
Gao
,
Y.
Li
,
D.
Su
,
X.
Zhang
, and
Y.
Song
, “
Flexible circuits and soft actuators by printing assembly of graphene
,”
ACS Appl. Mater. Interfaces
5
,
16281
16288
(
2017
).
48.
Shenoy
,
A. V.
,
Rheology of Filled Polymer Systems
(
Springer Netherlands
,
Dordrecht
,
1999
).
49.
See supplementary material at for more detailed data to support the discussions in the main text.

Supplementary Material

You do not currently have access to this content.