In order to achieve high-quality 3D printing of inorganic materials, a thorough evaluation of appropriate rheological characteristics and methodologies for formulating all-inorganic inks is required. We recently reported all-inorganic inks using BiSbTe-based thermoelectric particles coupled with a chalcogenidometallate (ChaM) inorganic binder. In the current study, we analyzed the rheological behavior of the all-inorganic inks to assess printability and 3D structural retention with respect to the ChaM content. The stress sweep and three-interval thixotropy test (3ITT) were conducted to mimic a 3D printing and interpret the flow behavior under nonlinear viscoelastic region. The binder-free inks showed a sharp overshoot of the loss modulus (G″) followed by the fluctuation of both the storage modulus G′ and G″ in the stress range of 10–50 Pa. In addition, the inks developed stronger colloidal structure than the initial state after the 3ITT, resulting in the non-uniform jetting. The nonlinear flow of the inks became stable by incorporating ChaM. However, the excessive ChaM (37.5 wt. %) brought about stress-induced structure regeneration analogous to the binder-free inks. The 3D structure integrity was interpreted by yield stress and solid-like characteristics based on the frequency sweep results after undergoing deformation. Poor printability from the 12.5 wt. % ChaM-containing ink was correlated to low yield stress (2 Pa) and a high slope of the G′ curve. However, the 25 wt. % ChaM-containing ink gave a high yield stress of 48 Pa and a low G′ curve slope of 0.2 even after nonlinear deformation, resulting in high 3D shape retention and printability.

1.
Fernandez
,
M.
,
M. E.
Munoz
,
A.
Santamaria
,
R.
Azaldegui
,
R.
Diez
, and
M.
Pelaez
, “
Rheological analysis of highly pigmented inks: Flocculation at high temperatures
,”
J. Rheol.
42
,
239
253
(
1998
).
2.
Wang
,
Z.
,
X.
Wang
, and
T.
Fang
, “
The rheology of the offset inks
,”
Surf. Coat. Int.
81
,
219
222
(
1998
).
3.
M’Barki
,
A.
,
L.
Bocquet
, and
A.
Stevenson
, “
Linking rheology and printability for dense and strong ceramics by direct ink writing
,”
Sci. Rep.
7
,
6017
(
2017
).
4.
Lower
,
G. W.
,
W. C.
Walker
, and
A. C.
Zettlemoyer
, “
The rheology of printing inks. 2. Temperature control studies in the rotational viscometer
,”
J. Colloid. Sci.
8
,
116
129
(
1953
).
5.
Tadros
,
T. F.
, “
Use of viscoelastic measurements in studying interactions in concentrated dispersions
,”
Langmuir
6
,
28
35
(
1990
).
6.
Sun
,
K.
,
T. S.
Wei
,
B. Y.
Ahn
,
J. Y.
Seo
,
S. J.
Dillon
, and
J. A.
Lewis
, “
3D printing of interdigitated Li-ion microbattery architectures
,”
Adv. Mater.
25
,
4539
4543
(
2013
).
7.
Zhu
,
C.
,
T. Y. J.
Han
,
E. B.
Duoss
,
A. M.
Golobic
,
J. D.
Kuntz
,
C. M.
Spadaccini
, and
M. A.
Worsley
, “
Highly compressible 3D periodic graphene aerogel microlattices
,”
Nat. Commun.
6
,
6962
(
2015
).
8.
Lewis
,
J. A.
, and
B. Y.
Ahn
, “
Three-dimensional printed electronics
,”
Nature
518
,
42
43
(
2015
).
9.
Wang
,
X.
,
M.
Jiang
,
Z. W.
Zhou
,
J. H.
Gou
, and
D.
Hui
, “
3D printing of polymer matrix composites: A review and prospective
,”
Composites Part B
110
,
442
458
(
2017
).
10.
Godoi
,
F. C.
,
S.
Prakash
, and
B. R.
Bhandari
, “
3d printing technologies applied for food design: Status and prospects
,”
J. Food Eng.
179
,
44
54
(
2016
).
11.
Compton
,
B. G.
, and
J. A.
Lewis
, “
3D-printing of lightweight cellular composites
,”
Adv. Mater.
26
,
5930
5935
(
2014
).
12.
Studart
,
A. R.
, “
Additive manufacturing of biologically-inspired materials
,”
Chem. Soc. Rev.
45
,
359
376
(
2016
).
13.
Travitzky
,
N.
,
A.
Bonet
,
B.
Dermeik
,
T.
Fey
,
I.
Filbert-Demut
,
L.
Schlier
,
T.
Schlordt
, and
P.
Greil
, “
Additive manufacturing of ceramic-based materials
,”
Adv. Eng. Mater.
16
,
729
754
(
2014
).
14.
Fu
,
K.
,
Y. G.
Yao
,
J. Q.
Dai
, and
L. B.
Hu
, “
Progress in 3D printing of carbon materials for energy-related applications
,”
Adv. Mater.
29
,
1603486
(
2017
).
15.
Vaezi
,
M.
,
H.
Seitz
, and
S. F.
Yang
, “
A review on 3D micro-additive manufacturing technologies
,”
Int. J. Adv. Manuf. Technol.
67
,
1721
1754
(
2013
).
16.
Zhu
,
C.
, and
J. E.
Smay
, “
Thixotropic rheology of concentrated alumina colloidal gels for solid freeform fabrication
,”
J. Rheol.
55
,
655
672
(
2011
).
17.
Lewis
,
J. A.
, “
Direct ink writing of 3D functional materials
,”
Adv. Funct. Mater.
16
,
2193
2204
(
2006
).
18.
Nadkarni
,
S. S.
, and
J. E.
Smay
, “
Concentrated barium titanate colloidal gels prepared by bridging flocculation for use in solid freeform fabrication
,”
J. Am. Ceram. Soc.
89
,
96
103
(
2006
).
19.
Lee
,
Y. J.
, and
P. V.
Braun
, “
Tunable inverse opal hydrogel pH sensors
,”
Adv. Mater.
15
,
563
566
(
2003
).
20.
Smay
,
J. E.
,
J.
Cesarano
, and
J. A.
Lewis
, “
Colloidal inks for directed assembly of 3-D periodic structures
,”
Langmuir
18
,
5429
5437
(
2002
).
21.
Diañez
,
I.
,
C.
Gallegos
,
E.
Brito-de la Fuente
,
I.
Martínez
,
C.
Valencia
,
M.
Sánchez
,
M.
Diaz
, and
J.
Franco
, “
3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response
,”
Food Hydrocoll.
87
,
321
330
(
2019
).
22.
Nguyen
,
N. A.
,
C. C.
Bowland
, and
A. K.
Naskar
, “
A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites
,”
Appl. Mater. Today
12
,
138
152
(
2018
).
23.
Huang
,
B.
, and
P. J.
Bártolo
, “
Rheological characterization of polymer/ceramic blends for 3D printing of bone scaffolds
,”
Polym. Test.
68
,
365
378
(
2018
).
24.
García-Tuñón
,
E.
,
E.
Feilden
,
H.
Zheng
,
E.
D’Elia
,
A.
Leong
, and
E.
Saiz
, “
Graphene oxide: An all-in-one processing additive for 3D printing
,”
ACS Appl. Mater. Interfaces
9
,
32977
32989
(
2017
).
25.
Mackay
,
M. E.
, “
The importance of rheological behavior in the additive manufacturing technique material extrusion
,”
J. Rheol.
62
,
1549
1561
(
2018
).
26.
Kim
,
F.
,
B.
Kwon
,
Y.
Eom
,
J. E.
Lee
,
S.
Park
,
S.
Jo
,
S. H.
Park
,
B. S.
Kim
,
H. J.
Im
,
M. H.
Lee
,
T. S.
Min
,
K. T.
Kim
,
H. G.
Chae
,
W. P.
King
, and
J. S.
Son
, “
3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks
,”
Nature Energy
3
,
301
309
(
2018
).
27.
Poudel
,
B.
,
Q.
Hao
,
Y.
Ma
,
Y.
Lan
,
A.
Minnich
,
B.
Yu
,
X.
Yan
,
D.
Wang
,
A.
Muto
, and
D.
Vashaee
, “
High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys
,”
Science
320
,
634
638
(
2008
).
28.
Bahk
,
J. H.
,
H. Y.
Fang
,
K.
Yazawa
, and
A.
Shakouri
, “
Flexible thermoelectric materials and device optimization for wearable energy harvesting
,”
J. Mater. Chem. C
3
,
10362
10374
(
2015
).
29.
We
,
J. H.
,
S. J.
Kim
, and
B. J.
Cho
, “
Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator
,”
Energy
73
,
506
512
(
2014
).
30.
Du
,
Y.
,
S. Z.
Shen
,
K. F.
Cai
, and
P. S.
Casey
, “
Research progress on polymer-inorganic thermoelectric nanocomposite materials
,”
Prog. Polym. Sci.
37
,
820
841
(
2012
).
31.
Ouyang
,
L.
,
R.
Yao
,
Y.
Zhao
, and
W.
Sun
, “
Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells
,”
Biofabrication
8
,
035020
(
2016
).
32.
Higgins
,
T. M.
,
H.
Warren
, and
M. I. H.
Panhuis
, “
Films, buckypapers and fibers from clay, chitosan and carbon nanotubes
,”
Nanomaterials
1
,
3
19
(
2011
).
33.
Toker
,
O. S.
,
S.
Karasu
,
M. T.
Yilmaz
, and
S.
Karaman
, “
Three interval thixotropy test (3ITT) in food applications: A novel technique to determine structural regeneration of mayonnaise under different shear conditions
,”
Food Res. Int.
70
,
125
133
(
2015
).
34.
Eom
,
Y.
, and
B. C.
Kim
, “
Solubility parameter-based analysis of polyacrylonitrile solutions in N, N-dimethyl formamide and dimethyl sulfoxide
,”
Polymer
55
,
2570
2577
(
2014
).
35.
Kovalenko
,
M. V.
,
M.
Scheele
, and
D. V.
Talapin
, “
Colloidal nanocrystals with molecular metal chalcogenide surface ligands
,”
Science
324
,
1417
1420
(
2009
).
36.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
37.
Mason
,
T.
,
J.
Bibette
, and
D.
Weitz
, “
Elasticity of compressed emulsions
,”
Phys. Rev. Lett.
75
,
2051
(
1995
).
38.
Bower
,
C.
,
C.
Gallegos
,
M.
Mackley
, and
J.
Madiedo
, “
The rheological and microstructural characterisation of the non-linear flow behaviour of concentrated oil-in-water emulsions
,”
Rheol. Acta
38
,
145
159
(
1999
).
39.
Bossard
,
F.
,
M.
Moan
, and
T.
Aubry
, “
Linear and nonlinear viscoelastic behavior of very concentrated plate-like kaolin suspensions
,”
J. Rheol.
51
,
1253
1270
(
2007
).
40.
Mason
,
T.
, and
D.
Weitz
, “
Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition
,”
Phys. Rev. Lett.
75
,
2770
(
1995
).
41.
Cloitre
,
M.
,
R.
Borrega
, and
L.
Leibler
, “
Rheological aging and rejuvenation in microgel pastes
,”
Phys. Rev. Lett.
85
,
4819
(
2000
).
42.
Tirtaatmadja
,
V.
,
K.
Tam
, and
R.
Jenkins
, “
Superposition of oscillations on steady shear flow as a technique for investigating the structure of associative polymers
,”
Macromolecules
30
,
1426
1433
(
1997
).
43.
Tirtaatmadja
,
V.
,
K.
Tam
, and
R.
Jenkins
, “
Rheological properties of model alkali-soluble associative (HASE) polymers: Effect of varying hydrophobe chain length
,”
Macromolecules
30
,
3271
3282
(
1997
).
44.
Parthasarathy
,
M.
, and
D. J.
Klingenberg
, “
Large amplitude oscillatory shear of ER suspensions
,”
J. Non-Newton. Fluid Mech.
81
,
83
104
(
1999
).
45.
Vermant
,
J.
, and
M.
Solomon
, “
Flow-induced structure in colloidal suspensions
,”
J. Phys. Condens. Matter
17
,
R187
R216
(
2005
).
46.
Reynaert
,
S.
,
P.
Moldenaers
, and
J.
Vermant
, “
Interfacial rheology of stable and weakly aggregated two-dimensional suspensions
,”
PCCP
9
,
6463
6475
(
2007
).
47.
Ozkan
,
M.
,
K.
Dimic-Misic
,
A.
Karakoc
,
S. G.
Hashmi
,
P.
Lund
,
T.
Maloney
, and
J.
Paltakari
, “
Rheological characterization of liquid electrolytes for drop-on-demand inkjet printing
,”
Org. Electron.
38
,
307
315
(
2016
).
48.
Eom
,
Y.
, and
B. C.
Kim
, “
The effect of dimethylsulfoxide on the dissociation process of physical complexes of polyacrylonitrile in N,N-dimethylformamide
,”
Polym. Int.
66
,
1099
1106
(
2017
).
49.
Eom
,
Y.
, and
B. C.
Kim
, “
Effects of chain conformation on the viscoelastic properties of polyacrylonitrile gels under large amplitude oscillatory shear
,”
Eur. Polym. J.
85
,
341
353
(
2016
).
50.
Poslinski
,
A.
,
M.
Ryan
,
R.
Gupta
,
S.
Seshadri
, and
F.
Frechette
, “
Rheological behavior of filled polymeric systems I. Yield stress and shear-thinning effects
,”
J. Rheol.
32
,
703
735
(
1988
).
51.
Tan
,
L. J.
,
S. P.
Liu
,
D.
Pan
, and
N.
Pan
, “
Gelation of polyacrylonitrile in a mixed solvent: Scaling and fractal analysis
,”
Soft Matter
5
,
4297
4304
(
2009
).
52.
Li
,
H.
,
Y. J.
Tan
, and
L.
Li
, “
A strategy for strong interface bonding by 3D bioprinting of oppositely charged κ-carrageenan and gelatin hydrogels
,”
Carbohydr. Polym.
198
,
261
269
(
2018
).
53.
Yilmaz
,
M. T.
, and
C.
Vatansever
, “
Three interval thixotropy test to determine structural regeneration of a glucomannan based hydrocolloid film at air/water interface: Interfacial, molecular, thermal and surface characterization
,”
Food Hydrocoll.
61
,
458
468
(
2016
).
54.
See supplementary material at https://doi.org/10.1122/1.5058078 for the ink formulations, particle size and size distribution, a variation of a dispensed amount of the inks with an extrusion pressure, and variations of the tan δ in the sequential 3ITTs with an increase of the deformation stress in the second interval.

Supplementary Material

You do not currently have access to this content.