Pluronic F-127 (Pl), a triblock copolymer that exhibits thermoreversible sol-gel transition, is being used with additives such as polysaccharides for enhanced gel stability and mechanical strength for controlled drug delivery applications. This study aims at elucidating the gelation behavior and structure-property relationship (at physiological temperature) of pluronic in the presence of hyaluronic acid (HA) using linear and nonlinear rheology. Small amplitude oscillatory shear of the gels indicated weak frequency dependence of G and G. Large amplitude oscillatory shear (LAOS) response indicated flow induced yielding with both the moduli following power law decay beyond the critical strain amplitude. Stress waveform analysis, Fourier analysis, and Chebyshev decomposition indicated similar qualitative features for gels with different HA content. Interestingly, there is a non-monotonic variation in the dynamic light scattering timescales, G (linear regime), and the critical stress values (at corresponding critical strains) with HA content. The physical insights obtained were understood in terms of a cage picture of soft glassy materials. Relaxation times corresponding to yielding transition obtained from strain rate frequency superposition measurements showed similar qualitative variation as those obtained from elastoviscoplastic modeling of the yielding processes occurring during an LAOS cycle. Based on these analyses, we obtain quantitative description of nonlinear rheological response of the Pl-HA gels.

1.
Galaev
,
I.
, and
B.
Mattiasson
,
Smart Polymers for Bioseparation and Bioprocessing
(
CRC
,
London
,
2001
).
2.
Wu
,
C.
,
T.
Liu
,
B.
Chu
,
D. K.
Schneider
, and
V.
Graziano
, “
Characterization of the PEO-PPO-PEO triblock copolymer and its application as a separation medium in capillary electrophoresis
,”
Macromolecules
30
,
4574
4583
(
1997
).
3.
Tan
,
I.
,
F.
Roohi
, and
M.-M.
Titirici
, “
Thermoresponsive polymers in liquid chromatography
,”
Anal. Methods
4
,
34
43
(
2012
).
4.
Huynh
,
C. T.
,
M. K.
Nguyen
, and
D. S.
Lee
, “
Injectable block copolymer hydrogels: Achievements and future challenges for biomedical applications
,”
Macromolecules
44
,
6629
6636
(
2011
).
5.
Nascimento
,
M.
,
M.
Franco
,
F.
Yokaichyia
,
E.
de Paula
,
C.
Lombello
, and
D.
de Araujo
, “
Hyaluronic acid in pluronic F-127/F-108 hydrogels for postoperative pain in arthroplasties: Influence on physico-chemical properties and structural requirements for sustained drug-release
,”
Int. J. Biol. Macromol.
111
,
1245
1254
(
2018
).
6.
Da Silva
,
R. M.
,
J. F.
Mano
, and
R. L.
Reis
, “
Smart thermoresponsive coatings and surfaces for tissue engineering: Switching cell-material boundaries
,”
Trends Biotechnol.
25
,
577
583
(
2007
).
7.
Roy
,
D.
,
W. L.
Brooks
, and
B. S.
Sumerlin
, “
New directions in thermoresponsive polymers
,”
Chem. Soc. Rev.
42
,
7214
7243
(
2013
).
8.
Escobar-Chávez
,
J. J.
,
M.
López-Cervantes
,
A.
Naik
,
Y.
Kalia
,
D.
Quintanar-Guerrero
, and
A.
Ganem-Quintanar
, “
Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations
,”
J. Pharm. Pharm. Sci.
9
,
339
358
(
2006
).
9.
Akash
,
M. S. H.
, and
K.
Rehman
, “
Recent progress in biomedical applications of pluronic PF127: Pharmaceutical perspectives
,”
J. Control Release
209
,
120
138
(
2015
).
10.
Alexandridis
,
P.
, and
T. A.
Hatton
, “
Poly(ethylene oxide)-poly(propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling
,”
Colloids Surf. A
96
,
1
46
(
1995
).
11.
Wanka
,
G.
,
H.
Hoffmann
, and
W.
Ulbricht
, “
The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution
,”
Colloid Polym. Sci.
268
,
101
117
(
1990
).
12.
Mortensen
,
K.
,
W.
Brown
, and
B.
Nordén
, “
Inverse melting transition and evidence of three-dimensional cubatic structure in a block-copolymer micellar system
,”
Phys. Rev. Lett.
68
,
2340
2343
(
1992
).
13.
Prud’homme
,
R. K.
,
G.
Wu
, and
D. K.
Schneider
, “
Structure and rheology studies of poly (oxyethylene-oxypropylene-oxyethylene) aqueous solution
,”
Langmuir
12
,
4651
4659
(
1996
).
14.
Goldmints
,
I.
,
F. K.
von Gottberg
,
K. A.
Smith
, and
T. A.
Hatton
, “
Small-angle neutron scattering study of PEO-PPO-PEO micelle structure in the unimer-to-micelle transition region
,”
Langmuir
13
,
3659
3664
(
1997
).
15.
Molino
,
F.
,
J.-F.
Berret
,
G.
Porte
,
O.
Diat
, and
P.
Lindner
, “
Identification of flow mechanisms for a soft crystal
,”
Eur. Phys. J. B
3
,
59
72
(
1998
).
16.
Yardimci
,
H.
,
B.
Chung
,
J. L.
Harden
, and
R. L.
Leheny
, “
Phase behavior and local dynamics of concentrated triblock copolymer micelles
,”
J. Chem. Phys.
123
,
244908
(
2005
).
17.
Jiang
,
J.
,
C.
Burger
,
C.
Li
,
J.
Li
,
M. Y.
Lin
,
R. H.
Colby
,
M. H.
Rafailovich
, and
J. C.
Sokolov
, “
Shear-induced layered structure of polymeric micelles by SANS
,”
Macromolecules
40
,
4016
4022
(
2007
).
18.
Newby
,
G. E.
,
I. W.
Hamley
,
S. M.
King
,
C. M.
Martin
, and
N. J.
Terrill
, “
Structure, rheology and shear alignment of pluronic block copolymer mixtures
,”
J. Colloid Interface Sci.
329
,
54
61
(
2009
).
19.
Manet
,
S.
,
A
Lecchi
,
M.
Impéror-Clerc
,
V.
Zholobenko
,
D.
Durand
,
C. L.
Oliveira
,
J. S.
Pedersen
,
I.
Grillo
,
F.
Meneau
, and
C.
Rochas
, “
Structure of micelles of a nonionic block copolymer determined by SANS and SAXS
,”
J. Phys. Chem. B
115
,
11318
11329
(
2011
).
20.
Eiser
,
E.
,
F.
Molino
,
G.
Porte
, and
X.
Pithon
, “
Flow in micellar cubic crystals
,”
Rheol. Acta
39
,
201
208
(
2000
).
21.
Park
,
H. J.
,
G. M.
Treich
,
Z. D.
Helming
,
J. E.
Morgan
,
C. Y.
Ryu
,
H. S.
Hwang
, and
G. Y.
Jung
, “
Micellar packing of pluronic block copolymer solutions: Polymeric impurity effects
,”
Macromol. Res.
23
,
13
20
(
2015
).
22.
Rassing
,
J.
, and
D.
Attwood
, “
Ultrasonic velocity and light-scattering studies on the polyoxyethylene-polyoxypropylene copolymer pluronic F127 in aqueous solution
,”
Int. J. Pharm.
13
,
47
55
(
1982
).
23.
Zhou
,
Z.
, and
B.
Chu
, “
Light-scattering study on the association behavior of triblock polymers of ethylene oxide and propylene oxide in aqueous solution
,”
J. Colloid Interface Sci.
126
,
171
180
(
1988
).
24.
Brown
,
W.
,
K.
Schillen
,
M.
Almgren
,
S.
Hvidt
, and
P.
Bahadur
, “
Micelle and gel formation in a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer in water solution: dynamic and static light scattering and oscillatory shear measurements
,”
J. Phys. Chem.
95
,
1850
1858
(
1991
).
25.
Malmsten
,
M.
, and
B.
Lindman
, “
Effects of homopolymers on the gel formation in aqueous block copolymer solutions
,”
Macromolecules
26
,
1282
1286
(
1993
).
26.
Douglass
,
B. S.
,
R. H.
Colby
,
L. A.
Madsen
, and
P. T.
Callaghan
, “
Rheo-NMR of wormlike micelles formed from nonionic pluronic surfactants
,”
Macromolecules
41
,
804
814
(
2008
).
27.
Trong
,
L. C. P.
,
M.
Djabourov
, and
A.
Ponton
, “
Mechanisms of micellization and rheology of PEO-PPO-PEO triblock copolymers with various architectures
,”
J. Colloid Interface Sci.
328
,
278
287
(
2008
).
28.
Lam
,
Y.-M.
,
N.
Grigorieff
, and
G.
Goldbeck-Wood
, “
Direct visualisation of micelles of pluronic block copolymers in aqueous solution by cryo-TEM
,”
Phys. Chem. Chem. Phys.
1
,
3331
3334
(
1999
).
29.
Gilbert
,
J.
,
C.
Washington
,
M.
Davies
, and
J.
Hadgraft
, “
The behaviour of pluronic F127 in aqueous solution studied using fluorescent probes
,”
Int. J. Pharm.
40
,
93
99
(
1987
).
30.
Hyun
,
K.
,
J. G.
Nam
,
M.
Wilhellm
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions
,”
Rheol. Acta
45
,
239
249
(
2006
).
31.
Mohan
,
P. H.
, and
R.
Bandyopadhyay
, “
Phase behavior and dynamics of a micelle-forming triblock copolymer system
,”
Phys. Rev. E
77
,
041803
(
2008
).
32.
Jalaal
,
M.
,
G.
Cottrell
,
N.
Balmforth
, and
B.
Stoeber
, “
On the rheology of pluronic F127 aqueous solutions
,”
J. Rheol.
61
,
139
146
(
2017
).
33.
Vadnere
,
M.
,
G.
Amidon
,
S.
Lindenbaum
, and
J. L.
Haslam
, “
Thermodynamic studies on the gel-sol transition of some pluronic polyols
,”
Int. J. Pharm.
22
,
207
218
(
1984
).
34.
Renou
,
F.
,
J.
Stellbrink
, and
G.
Petekidis
, “
Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS)
,”
J. Rheol.
54
,
1219
1242
(
2010
).
35.
Poulos
,
A. S.
,
J.
Stellbrink
, and
G.
Petekidis
, “
Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear
,”
Rheol. Acta
52
,
785
800
(
2013
).
36.
Erwin
,
B. M.
,
M.
Cloitre
,
M.
Gauthier
, and
D.
Vlassopoulos
, “
Dynamics and rheology of colloidal star polymers
,”
Soft Matter
6
,
2825
2833
(
2010
).
37.
Vlassopoulos
,
D.
, and
M.
Cloitre
, “
Tunable rheology of dense soft deformable colloids
,”
Curr. Opin. Colloid Interface Sci.
19
,
561
574
(
2014
).
38.
Poulos
,
A. S.
,
F.
Renou
,
A. R.
Jacob
,
N.
Koumakis
, and
G.
Petekidis
, “
Large amplitude oscillatory shear (LAOS) in model colloidal suspensions and glasses: Frequency dependence
,”
Rheol. Acta
54
,
715
724
(
2015
).
39.
Miyazaki
,
K.
,
H. M.
Wyss
,
D. A.
Weitz
, and
D. R.
Reichman
, “
Nonlinear viscoelasticity of metastable complex fluids
,”
Europhys. Lett.
75
,
915
921
(
2006
).
40.
Ovarlez
,
G.
,
Q.
Barral
, and
P.
Coussot
, “
Three-dimensional jamming and flows of soft glassy materials
,”
Nat. Mater.
9
,
115
119
(
2010
).
41.
Sollich
,
P.
, “
Rheological constitutive equation for a model of soft glassy materials
,”
Phys. Rev. E
58
,
738
759
(
1998
).
42.
Fielding
,
S. M.
,
P.
Sollich
, and
M. E.
Cates
, “
Aging and rheology in soft materials
,”
J. Rheol.
44
,
323
369
(
2000
).
43.
Wyss
,
H. M.
,
K.
Miyazaki
,
J.
Mattsson
,
Z.
Hu
,
D. R.
Reichman
, and
D. A.
Weitz
, “
Strain-rate frequency superposition: A rheological probe of structural relaxation in soft materials
,”
Phys. Rev. Lett.
98
,
238303
(
2007
).
44.
Kalelkar
,
C.
,
A.
Lele
, and
S.
Kamble
, “
Strain-rate frequency superposition in large-amplitude oscillatory shear
,”
Phys. Rev. E
81
,
031401
(
2010
).
45.
Erwin
,
B. M.
,
S. A.
Rogers
,
M.
Cloitre
, and
D.
Vlassopoulos
, “
Examining the validity of strain-rate frequency superposition when measuring the linear viscoelastic properties of soft materials
,”
J. Rheol.
54
,
187
195
(
2010
).
46.
Jacob
,
A. R.
,
A. S.
Poulos
,
S.
Kim
,
J.
Vermant
, and
G.
Petekidis
, “
Convective cage release in model colloidal glasses
,”
Phys. Rev. Lett.
115
,
218301
(
2015
).
47.
Radhakrishnan
,
R.
, and
S. M.
Fielding
, “
Shear banding of soft glassy materials in large amplitude oscillatory shear
,”
Phys. Rev. Lett.
117
,
188001
(
2016
).
48.
Voigtmann
,
T.
, “
Nonlinear glassy rheology
,”
Curr. Opin. Colloid Interface Sci.
19
,
549
560
(
2014
).
49.
Saramito
,
P.
, “
A new constitutive equation for elastoviscoplastic fluid flows
,”
J. Non-Newton Fluid Mech.
145
,
1
14
(
2007
).
50.
Li
,
X.
,
E.
kyoung Park
,
K.
Hyun
,
L.
Oktavia
, and
M.
Kwak
, “
Rheological analysis of core-stabilized pluronic F127 by semi-interpenetrating network (sIPN) in aqueous solution
,”
J. Rheol.
62
,
107
120
(
2018
).
51.
Dao
,
M. M.
,
M. M.
Domach
, and
L. M.
Walker
, “
Impact of dispersed particles on the structure and shear alignment of block copolymer soft solids
,”
J. Rheol.
61
,
237
252
(
2017
).
52.
Kjøniksen
,
A.-L.
,
M. T.
Calejo
,
K.
Zhu
,
B.
Nyström
, and
S. A.
Sande
, “
Stabilization of pluronic gels in the presence of different polysaccharides
,”
J. Appl. Polym. Sci.
131
,
40465
(
2014
).
53.
Nambam
,
J. S.
, and
J.
Philip
, “
Effects of interaction of ionic and nonionic surfactants on self-assembly of PEO-PPO-PEO triblock copolymer in aqueous solution
,”
J. Phys. Chem. B
116
,
1499
1507
(
2012
).
54.
Basak
,
R.
,
N.
Mukhopadhyay
, and
R.
Bandyopadhyay
, “
Experimental studies of the jamming behaviour of triblock copolymer solutions and triblock copolymer-anionic surfactant mixtures
,”
Eur. Phys. J. E
34
,
1
9
(
2011
).
55.
Kim
,
M. R.
, and
T. G.
Park
, “
Temperature-responsive and degradable hyaluronic acid/pluronic composite hydrogels for controlled release of human growth hormone
,”
J. Control Release
80
,
69
77
(
2002
).
56.
Lee
,
Y.
,
H. J.
Chung
,
S.
Yeo
,
C.-H.
Ahn
,
H.
Lee
,
P. B.
Messersmith
, and
T. G.
Park
, “
Thermo-sensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction
,”
Soft Matter
6
,
977
983
(
2010
).
57.
Cho
,
K. S.
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
A geometrical interpretation of large amplitude oscillatory shear response
,”
J. Rheol.
49
,
747
758
(
2005
).
58.
Ewoldt
,
R. H.
,
A.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
59.
Masri
,
D. E.
,
G.
Brambilla
,
M.
Pierno
,
G.
Petekidis
,
A. B.
Schofield
,
L.
Berthier
, and
L.
Cipelletti
, “
Dynamic light scattering measurements in the activated regime of dense colloidal hard spheres
,”
J. Stat. Mech. Theory Exp.
2009
,
P07015
(
2009
).
60.
Brambilla
,
G.
,
D.
El Masri
,
M.
Pierno
,
L.
Berthier
,
L.
Cipelletti
,
G.
Petekidis
, and
A. B.
Schofield
, “
Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition
,”
Phys. Rev. Lett.
102
,
085703
(
2009
).
61.
Nicolai
,
T.
,
O.
Colombani
, and
C.
Chassenieux
, “
Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers
,”
Soft Matter
6
,
3111
3118
(
2010
).
62.
Rogers
,
S. A.
,
B. M.
Erwin
,
D.
Vlassopoulos
, and
M.
Cloitre
, “
A sequence of physical processes determined and quantified in LAOS: application to a yield stress fluid
,”
J. Rheol.
55
,
435
458
(
2011
).
63.
See supplementary material at https://doi.org/10.1122/1.5045073 for additional details related to gelation, rheological response, and EVP modeling.

Supplementary Material

You do not currently have access to this content.