Flow-induced crystallization in polymers is an important problem in both fundamental polymer science and industrial polymer processing. The key process of flow-induced nucleation occurs on a very rapid time scale and on a highly localized lengthscale and so is extremely difficult to observe directly in experiments. However, recent advances in molecular dynamics (MD) simulations mean that flow-induced nucleation can be simulated at an achievable computational cost. Such studies offer unrivalled time and lengthscale resolution of the nucleation process. Nevertheless, the computational cost of MD places considerable constraints on the range of molecular weights, temperature, and polydispersity that can be studied. In this review, I will discuss recent progress, describe how future work might resolve or work around the constraints of molecular simulation, and examine how multiscale modeling could translate molecular insight into improved polymer processing.

1.
Janeschitz-Kriegl
,
H.
,
Crystallization Modalities in Polymer Melt Processing
, 1st ed. (
Springer-Verlag
,
Wien
,
2010
).
2.
Wang
,
Z.
,
Z.
Ma
, and
L.
Li
, “
Flow-induced crystallization of polymers: Molecular and thermodynamic considerations
,”
Macromolecules
49
,
1505
1517
(
2016
).
3.
Cui
,
K.
,
Z.
Ma
,
N.
Tian
,
F.
Su
,
D.
Liu
, and
L.
Li
, “
Multiscale and multistep ordering of flow-induced nucleation of polymers
,”
Chem. Rev.
118
,
1840
1886
(
2018
).
4.
Graham
,
R. S.
, “
Molecular modelling of flow-induced crystallisation in polymers
,”
J. Eng. Math.
71
,
237
251
(
2011
).
5.
Graham
,
R. S.
, “
Modelling flow-induced crystallisation in polymers
,”
Chem. Commun.
50
,
3531
3545
(
2014
).
6.
Binsbergen
,
F. L.
, “
Orientation-induced nucleation in polymer crystallization
,”
Nature
211
,
516
517
(
1966
).
7.
Keller
,
A.
, and
H.
Kolnaar
, Flow induced orientation and structure formation in processing of polymers, in Processing of Polymers, edited by H. Meijer (Wiley-VCH, Weinheim, 1997), Vol. 18, p. 189.
8.
Eder
,
G.
, and
H.
Janeschitz-Kriegl
, Crystallization, in Processing of Polymers, edited by H. E. H. Meijer, Materials Science and Technology Vol. 18 (Wiley-VCH, Weinheim, 1997), p. 269.
9.
Kumaraswamy
,
G.
,
A. M.
Issaian
, and
J. A.
Kornfield
, “
Shear-enhanced crystallization in isotactic polypropylene. 1. Correspondence between in situ rheo-optics and ex situ structure determination
,”
Macromolecules
32
,
7537
7547
(
1999
).
10.
Hsiao
,
B. S.
,
L.
Yang
,
R. H.
Somani
,
C. A.
Avila-Orta
, and
L.
Zhu
, “
Unexpected shish-kebab structure in a sheared polyethylene melt
,”
Phys. Rev. Lett.
94
,
117802
(
2005
).
11.
Kimata
,
S.
,
T.
Sakurai
,
Y.
Nozue
,
T.
Kasahara
,
N.
Yamaguchi
,
T.
Karino
,
M.
Shibayama
, and
J. A.
Kornfield
, “
Molecular basis of the shish-kebab morphology in polymer crystallization
,”
Science
316
,
1014
1017
(
2007
).
12.
Mykhaylyk
,
O. O.
,
P.
Chambon
,
R. S.
Graham
,
J. P. A.
Fairclough
,
P. D.
Olmsted
, and
A. J.
Ryan
, “
The specific work of flow as a criterion for orientation in polymer crystallization
,”
Macromolecules
41
,
1901
1904
(
2008
).
13.
Seki
,
M.
,
D. W.
Thurman
,
J. P.
Oberhauser
, and
J. A.
Kornfield
, “
Shear-mediated crystallization of isotactic polypropylene: The role of long chain-long chain overlap
,”
Macromolecules
35
,
2583
2594
(
2002
).
14.
Heeley
,
E. L.
,
C. M.
Fernyhough
,
R. S.
Graham
,
P. D.
Olmsted
,
N. J.
Inkson
,
J.
Embery
,
D. J.
Groves
,
T. C. B.
McLeish
,
A. C.
Morgovan
,
F.
Meneau
,
W.
Bras
, and
A. J.
Ryan
, “
Shear-induced crystallization in model blends of linear and long-chain branched hydrogenated polybutadienes
,”
Macromolecules
39
,
5058
5071
(
2006
).
15.
Coppola
,
S.
,
L.
Balzano
,
E.
Gioffredi
,
P. L.
Maffettone
, and
N.
Grizzuti
, “
Effects of the degree of undercooling on flow induced crystallization in polymer melts
,”
Polymer
45
,
3249
3256
(
2004
).
16.
Rhoades
,
A. M.
,
A. M.
Gohn
,
J.
Seo
,
R.
Androsch
, and
R. H.
Colby
, “
Sensitivity of polymer crystallization to shear at low and high supercooling of the melt
,”
Macromolecules
51
,
2785
2795
(
2018
).
17.
Azzurri
,
F.
, and
G. C.
Alfonso
, “
Lifetime of shear-induced crystal nucleation precursors
,”
Macromolecules
38
,
1723
1728
(
2005
).
18.
Stadlbauer
,
M.
,
H.
Janeschitz-Kriegl
,
G.
Eder
, and
E.
Ratajski
, “
New extensional rheometer for creep flow at high tensile stress. Part ii. Flow induced nucleation for the crystallization of iPP
,”
J. Rheol.
48
,
631
639
(
2004
).
19.
Okura
,
M.
,
O. O.
Mykhaylyk
, and
A. J.
Ryan
, “
Effect of matrix polymer on flow-induced nucleation in polymer blends
,”
Phys. Rev. Lett.
110
,
087801
(
2013
).
20.
White
,
E. E. B.
,
H. H.
Winter
, and
J. P.
Rothstein
, “
Extensional-flow-induced crystallization of isotactic polypropylene
,”
Rheol. Acta
51
,
303
314
(
2012
).
21.
Liu
,
D.
,
N.
Tian
,
K.
Cui
,
W.
Zhou
,
X.
Li
, and
L.
Li
, “
Correlation between flow-induced nucleation morphologies and strain in polyethylene: From uncorrelated oriented point-nuclei, scaffold-network, and microshish to shish
,”
Macromolecules
46
,
3435
3443
(
2013
).
22.
Coccorullo
,
I.
,
R.
Pantani
, and
G.
Titomanlio
, “
Spherulitic nucleation and growth rates in an iPP under continuous shear flow
,”
Macromolecules
41
,
9214
9223
(
2008
).
23.
Nazari
,
B.
,
H.
Tran
,
B.
Beauregard
,
M.
Flynn-Hepford
,
D.
Harrell
,
S. T.
Milner
, and
R. H.
Colby
, “
Two distinct morphologies for semicrystalline isotactic polypropylene crystallized after shear flow
,”
Macromolecules
51
,
4750
4761
(
2018
).
24.
Wang
,
Z.
,
J.
Ju
,
J.
Yang
,
Z.
Ma
,
D.
Liu
,
K.
Cui
,
H.
Yang
,
J.
Chang
,
N.
Huang
, and
L.
Li
, “
The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene
,”
Sci. Rep.
6
,
32968
(
2016
).
25.
Troisi
,
E.
,
S.
Arntz
,
P.
Roozemond
,
A.
Tsou
, and
G.
Peters
, “
Application of a multi-phase multi-morphology crystallization model to isotactic polypropylenes with different molecular weight distributions
,”
Eur. Polym. J.
97
,
397
408
(
2017
).
26.
Balzano
,
L.
,
N.
Kukalyekar
,
S.
Rastogi
,
G. W. M.
Peters
, and
J. C.
Chadwick
, “
Crystallization and dissolution of flow-induced precursors
,”
Phys. Rev. Lett.
100
,
048302
(
2008
).
27.
Mykhaylyk
,
O. O.
,
C. M.
Fernyhough
,
M.
Okura
,
J. P. A.
Fairclough
,
A. J.
Ryan
, and
R.
Graham
, “
Monodisperse macromolecules—A stepping stone to understanding industrial polymers
,”
Eur. Polym. J.
47
,
447
464
(
2011
).
28.
Pantani
,
R.
,
I.
Coccorullo
,
V.
Volpe
, and
G.
Titomanlio
, “
Shear-induced nucleation and growth in isotactic polypropylene
,”
Macromolecules
43
,
9030
9038
(
2010
).
29.
Androsch
,
R.
,
M. L. D.
Lorenzo
, and
C.
Schick
, “
Optical microscopy to study crystal nucleation in polymers using a fast scanning chip calorimeter for precise control of the nucleation pathway
,”
Macromol. Chem. Phys.
219
,
1700479
(
2018
).
30.
Balzano
,
L.
,
S.
Rastogi
, and
G. W. M.
Peters
, “
Crystallization and precursors during fast short-term shear
,”
Macromolecules
42
,
2088
2092
(
2009
).
31.
Hobbs
,
J. K.
,
O. E.
Farrance
, and
L.
Kailas
, “
How atomic force microscopy has contributed to our understanding of polymer crystallization
,”
Polymer
50
,
4281
4292
(
2009
).
32.
Azzurri
,
F.
, and
G. C.
Alfonso
, “
Insights into formation and relaxation of shear-induced nucleation precursors in isotactic polystyrene
,”
Macromolecules
41
,
1377
1383
(
2008
).
33.
Doufas
,
A.
,
I.
Dairanieh
, and
A.
McHugh
, “
A continuum model for flow-induced crystallization of polymer melts
,”
J. Rheol.
43
,
85
109
(
1999
).
34.
Zuidema
,
H.
,
G. W. M.
Peters
, and
H. E. H.
Meijer
, “
Development and validation of a recoverable strain-based model for flow-induced crystallization of polymers
,”
Macromol. Theor. Simul.
10
,
447
460
(
2001
).
35.
Zheng
,
R.
, and
P.
Kennedy
, “
A model for post-flow induced crystallization: General equations and predictions
,”
J. Rheol.
48
,
823
842
(
2004
).
36.
Scelsi
,
L.
,
M. R.
Mackley
,
H.
Klein
,
P. D.
Olmsted
,
R. S.
Graham
,
O. G.
Harlen
, and
T. C. B.
McLeish
, “
Experimental observations and matching viscoelastic specific work predictions of flow-induced crystallization for molten polyethylene within two flow geometries
,”
J. Rheol.
53
,
859
876
(
2009
).
37.
Steenbakkers
,
R. J. A.
, and
G. W. M.
Peters
, “
A stretch-based model for flow-enhanced nucleation of polymer melts
,”
J. Rheol.
55
,
401
433
(
2011
).
38.
Roozemond
,
P. C.
,
R. J. A.
Steenbakkers
, and
G. W. M.
Peters
, “
A model for flow-enhanced nucleation based on fibrillar dormant precursors
,”
Macromol. Theor. Simul.
20
,
93
109
(
2011
).
39.
Roozemond
,
P. C.
,
M. V.
Drongelen
,
Z.
Ma
,
M. A.
Hulsen
, and
G. W. M.
Peters
, “
Modeling flow-induced crystallization in isotactic polypropylene at high shear rates
,”
J. Rheol.
59
,
613
642
(
2015
).
40.
McIlroy
,
C.
, and
R. S.
Graham
, “
Modelling flow-enhanced crystallisation during fused filament fabrication of semi-crystalline polymer melts
,”
Addit. Manuf.
24
,
323
–340 (
2018
).
41.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
Oxford
,
1986
).
42.
McLeish
,
T. C. B.
, “
Tube theory of entangled polymer dynamics
,”
Adv. Phys.
51
,
1379
1527
(
2002
).
43.
Snijkers
,
F.
,
R.
Pasquino
,
P. D.
Olmsted
, and
D.
Vlassopoulos
, “
Perspectives on the viscoelasticity and flow behavior of entangled linear and branched polymers
,”
J. Phys.: Condens. Matter
27
,
473002
(
2015
).
44.
Graham
,
R. S.
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
45.
Bent
,
J.
,
L. R.
Hutchings
,
R. W.
Richards
,
T.
Gough
,
R.
Spares
,
P. D.
Coates
,
I.
Grillo
,
O. G.
Harlen
,
D. J.
Read
,
R. S.
Graham
,
A. E.
Likhtman
,
D. J.
Groves
,
T. M.
Nicholson
, and
T. C. B.
McLeish
, “
Neutron-mapping polymer flow: Scattering, flow-visualisation and molecular theory
,”
Science
301
,
1691
1695
(
2003
).
46.
Blanchard
,
A.
,
R. S.
Graham
,
M.
Heinrich
,
W.
Pyckhout-Hintzen
,
D.
Richter
,
A. E.
Likhtman
,
T. C. B.
McLeish
,
D. J.
Read
,
E.
Straube
, and
J.
Kohlbrecher
, “
SANS observation of chain retraction after a large step deformation
,”
Phys. Rev. Lett.
95
,
166001
(
2005
).
47.
Boudara
,
V. A. H.
,
J. D.
Peterson
,
L. G.
Leal
, and
D. J.
Read
, “
Nonlinear rheology of polydisperse blends of entangled linear polymers: Rolie-Double-Poly model
,”
J. Rheol.
63
,
71
91
(
2019
).
48.
Mead
,
D. W.
,
S.
Monjezi
, and
J.
Park
, “
A constitutive model for entangled polydisperse linear flexible polymers with entanglement dynamics and a configuration dependent friction coefficient. Part I: Model derivation
,”
J. Rheol.
62
,
121
134
(
2018
).
49.
Peters
,
G. W.
,
L.
Balzano
, and
R. J.
Steenbakkers
, Flow-induced crystallization, in Handbook of Polymer Crystallizatio, edited by E. Piorkowska and G. C. Rutledge (Wiley, Hoboken, NJ, 2013), pp. 399–431.
50.
Allen
,
M.
, and
D.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University
,
Oxford
,
1989
).
51.
Frenkel
,
D.
, and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic
,
New York
,
2002
).
52.
Rapaport
,
D. C.
,
The Art of Molecular Dynamics Simulation
, 2nd ed. (
Cambridge University
,
Cambridge
,
2004
).
53.
Rutledge
,
G. C.
, Computer modeling of polymer crystallization, in Handbook of Polymer Crystallizatio, edited by E. Piorkowska and G. C. Rutledge (Wiley, Hoboken, NJ, 2013), pp. 197–214.
54.
van Puyvelde
,
P.
,
F.
Langouche
, and
J.
Baert
, “
Flow-induced crystallization in poly-1-butene: The shish-kebab transition
,”
Int. J. Mater. Form.
1
,
667
670
(
2008
).
55.
Seo
,
J.
,
H.
Takahashi
,
B.
Nazari
,
A. M.
Rhoades
,
R. P.
Schaake
, and
R. H.
Colby
, “
Isothermal flow-induced crystallization of polyamide 66 melts
,”
Macromolecules
51
,
4269
4279
(
2018
).
56.
Northcutt
,
L. A.
,
S. V.
Orski
,
K. B.
Migler
, and
A. P.
Kotula
, “
Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing
,”
Polymer
154
,
182
187
(
2018
).
57.
Yi
,
P.
,
C. R.
Locker
, and
G. C.
Rutledge
, “
Molecular dynamics simulation of homogeneous crystal nucleation in polyethylene
,”
Macromolecules
46
,
4723
4733
(
2013
).
58.
Olsson
,
P. A.
,
P. J.
in’t Veld
,
E.
Andreasson
,
E.
Bergvall
,
E. P.
Jutemar
,
V.
Petersson
,
G. C.
Rutledge
, and
M.
Kroon
, “
All-atomic and coarse-grained molecular dynamics investigation of deformation in semi-crystalline lamellar polyethylene
,”
Polymer
153
,
305
316
(
2018
).
59.
Zhang
,
W.
, and
R. G.
Larson
, “
Direct all-atom molecular dynamics simulations of the effects of short chain branching on polyethylene oligomer crystal nucleation
,”
Macromolecules
51
,
4762
4769
(
2018
).
60.
Yamamoto
,
T.
, “
Molecular dynamics simulations of polymer crystallization in highly supercooled melt: Primary nucleation and cold crystallization
,”
J. Chem. Phys.
133
,
034904
(
2010
).
61.
Gee
,
R.
,
N.
Lacevic
, and
L.
Fried
, “
Atomistic simulations of spinodal phase separation preceding polymer crystallization
,”
Nat. Mater.
5
,
39
43
(
2006
).
62.
Auer
,
S.
, and
D.
Frenkel
, “
Numerical simulation of crystal nucleation in colloids
,”
Adv. Polym. Sci.
173
,
149
208
(
2005
).
63.
Graham
,
R. S.
, and
P. D.
Olmsted
, “
Coarse-grained simulations of flow-induced nucleation in semicrystalline polymers
,”
Phys. Rev. Lett.
103
,
115702
(
2009
).
64.
Zerze
,
H.
,
J.
Mittal
, and
A. J.
Mchugh
, “
Ab initio crystallization of alkanes: Structure and kinetics of nuclei formation
,”
Macromolecules
46
,
9151
9157
(
2013
).
65.
Luo
,
C.
, and
J.-U.
Sommer
, “
Frozen topology: Entanglements control nucleation and crystallization in polymers
,”
Phys. Rev. Lett.
112
,
195702
(
2014
).
66.
Baig
,
C.
,
B. J.
Edwards
,
D. J.
Keffer
, and
H. D.
Cochran
, “
A proper approach for nonequilibrium molecular dynamics simulations of planar elongational flow
,”
J. Chem. Phys.
122
,
114103
(
2005
).
67.
Hunt
,
T. A.
, “
Periodic boundary conditions for the simulation of uniaxial extensional flow of arbitrary duration
,”
Mol. Simul.
42
,
347
352
(
2016
).
68.
Nicholson
,
D. A.
, and
G. C.
Rutledge
, “
Molecular simulation of flow-enhanced nucleation in n-eicosane melts under steady shear and uniaxial extension
,”
J. Chem. Phys.
145
,
244903
(
2016
).
69.
Anwar
,
M.
,
J. T.
Berryman
, and
T.
Schilling
, “
Crystal nucleation mechanism in melts of short polymer chains under quiescent conditions and under shear flow
,”
J. Chem. Phys.
141
,
124910
(
2014
).
70.
Hess
,
B.
, “
Determining the shear viscosity of model liquids from molecular dynamics simulations
,”
J. Chem. Phys.
116
,
209
–217 (
2002
).
71.
Ko
,
M. J.
,
N.
Waheed
,
M. S.
Lavine
, and
G. C.
Rutledge
, “
Characterization of polyethylene crystallization from an oriented melt by molecular dynamics simulation
,”
J. Chem. Phys.
121
,
2823
2832
(
2004
).
72.
Lavine
,
M. S.
,
N.
Waheed
, and
G. C.
Rutledge
, “
Molecular dynamics simulation of orientation and crystallization of polyethylene during uniaxial extension
,”
Polymer
44
,
1771
1779
(
2003
).
73.
Jabbarzadeh
,
A.
, and
R.
Tanner
, “
Crystallization of alkanes under quiescent and shearing conditions
,”
J. Nonnewton. Fluid Mech.
160
,
11
21
(
2009
).
74.
Jabbarzadeh
,
A.
, and
R. I.
Tanner
, “
Flow-induced crystallization: Unravelling the effects of shear rate and strain
,”
Macromolecules
43
,
8136
8142
(
2010
).
75.
Yi
,
P.
, and
G. C.
Rutledge
, “
Molecular simulation of bundle-like crystal nucleation from n-eicosane melts
,”
J. Chem. Phys.
135
,
024903
(
2011
).
76.
Nicholson
,
D. A.
, and
G. C.
Rutledge
, “
Analysis of nucleation using mean first-passage time data from molecular dynamics simulation
,”
J. Chem. Phys.
144
,
134105
(
2016
).
77.
Anwar
,
M.
,
F.
Turci
, and
T.
Schilling
, “
Crystallization mechanism in melts of short n-alkane chains
,”
J. Chem. Phys.
139
,
214904
(
2013
).
78.
Anwar
,
M.
,
Computer simulations of crystallization mechanism in polymeric materials
, Ph.D. thesis,
University of Luxembourg
,
Luxembourg
,
2014
.
79.
Chen
,
Q.
,
D.
Kozuch
, and
S. T.
Milner
, “
“Plunger” method for simulating crystal-melt interfacial free energies
,”
Macromolecules
50
,
4797
4806
(
2017
).
80.
Hu
,
W.
,
D.
Frenkel
, and
V.
Mathot
, “
Simulation of shish-kebab crystallite induced by a single prealigned macromolecule
,”
Macromolecules
35
,
7172
7174
(
2002
).
81.
Nie
,
Y.
,
H.
Gao
,
M.
Yu
,
Z.
Hu
,
G.
Reiter
, and
W.
Hu
, “
Competition of crystal nucleation to fabricate the oriented semi-crystalline polymers
,”
Polymer
54
,
3402
3407
(
2013
).
82.
Sadler
,
D.
, and
G.
Gilmer
, “
Rate-theory model of polymer crystallization
,”
Phys. Rev. Lett.
56
,
2708
2711
(
1986
).
83.
Doye
,
J.
, and
D.
Frenkel
, “
Mechanism of thickness determination in polymer crystals
,”
Phys. Rev. Lett.
81
,
2160
2163
(
1998
).
84.
Graham
,
R. S.
, and
P. D.
Olmsted
, “
Kinetic Monte Carlo simulations of flow-induced nucleation in polymer melts
,”
Faraday Discuss.
144
,
71
92
(
2010
).
85.
Jolley
,
K.
, and
R. S.
Graham
, “
A fast algorithm for simulating flow-induced nucleation in polymers
,”
J. Chem. Phys.
134
,
164901
(
2011
).
86.
Jolley
,
K.
, and
R. S.
Graham
, “
Flow-induced nucleation in polymer melts: A study of the GO model for pure and bimodal blends, under shear and extensional flow
,”
Rheol. Acta
52
,
271
286
(
2013
).
87.
Hamer
,
M. J.
,
J. A. D.
Wattis
, and
R. S.
Graham
, “
Analytic calculation of nucleation rates from a kinetic Monte Carlo simulation of flow-induced crystallization in polymers
,”
J. Non-Newton. Fluid Mech.
165
,
1294
1301
(
2010
).
88.
Hamer
,
M. J.
,
J. A. D.
Wattis
, and
R. S.
Graham
, “
A method to project the rate kinetics of high dimensional barrier crossing problems onto a tractable 1D system
,”
Soft Matter
8
,
11396
11408
(
2012
).
89.
Chandler
,
D.
, “
Statistical-mechanics of isomerization dynamics in liquids and transition-state approximation
,”
J. Chem. Phys.
68
,
2959
2970
(
1978
).
90.
Faradjian
,
A.
, and
R.
Elber
, “
Computing time scales from reaction coordinates by milestoning
,”
J. Chem. Phys.
120
,
10880
10889
(
2004
).
91.
Bolhuis
,
P. G.
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
, “
Transition path sampling: Throwing ropes over rough mountain passes, in the dark
,”
Annu. Rev. Phys. Chem.
53
,
291
318
(
2002
).
92.
Allen
,
R. J.
,
C.
Valeriani
, and
P. R.
ten Wolde
, “
Forward flux sampling for rare event simulations
,”
J. Phys.: Condens. Matter
21
,
463102
(
2009
).
93.
Kelly
,
A. L.
,
T.
Gough
,
B. R.
Whiteside
, and
P. D.
Coates
, “
High shear strain rate rheometry of polymer melts
,”
J. Appl. Polym. Sci.
114
,
864
873
(
2009
).
You do not currently have access to this content.