Power law rheology is of widespread occurrence in complex materials that are characterized by the presence of a very broad range of microstructural length and time scales. Although phenomenological models able to reproduce the observed rheological features exist, in general a well-established connection with the microscopic origin of this mechanical behavior is still missing. As a model system, this work focuses on a fractal colloidal gel. We thoroughly characterize the linear power law rheology of the sample and its age dependence. We show that at all sample ages and for a variety of rheological tests, the gel linear viscoelasticity is very accurately described by a fractional Maxwell (FM) model, characterized by a power law behavior. Thanks to a unique setup that couples small-angle static and dynamic light scattering to rheological measurements, we show that in the linear regime, shear induces reversible nonaffine rearrangements which might be at the origin of the power law rheology and we discuss the possible relationship between the FM model and the microscopic structure of the gel.

1.
Fabry
,
B.
,
G. N.
Maksym
,
J. P.
Butler
,
M.
Glogauer
,
D.
Navajas
, and
J. J.
Fredberg
, “
Scaling the microrheology of living cells
,”
Phys. Rev. Lett.
87
,
148102
(
2001
).
2.
Djordjevic
,
V. D.
,
J.
Jaric
,
B.
Fabry
,
J. J.
Fredberg
, and
D.
Stamenovic
, “
Fractional derivatives embody essential features of cell rheological behavior
,”
Ann. Biomed. Eng.
31
,
692
699
(
2003
).
3.
Desprat
,
N.
,
A.
Richert
,
J.
Simeon
, and
A.
Asnacios
, “
Creep function of a single living cell
,”
Biophys. J.
88
,
2224
2233
(
2005
).
4.
Balland
,
M.
,
N.
Desprat
,
D.
Icard
,
S.
Feriol
,
A.
Asnacios
,
J.
Browaeys
,
S.
Hanon
, and
F.
Gallet
, “
Power laws in microrheology experiments on living cells: Comparative analysis and modeling
,”
Phys. Rev. E
74
,
021911
(
2006
).
5.
Kollmannsberger
,
P.
, and
B.
Fabry
, “
Linear and nonlinear rheology of living cells
,”
Annu. Rev. Mater. Res.
41
,
75
97
(
2011
).
6.
Hecht
,
F. M.
,
J.
Rheinlaender
,
N.
Schierbaum
,
W. H.
Goldmann
,
B.
Fabry
, and
T. E.
Schoffer
, “
Imaging viscoelastic properties of live cells by AFM: Power-law rheology on the nanoscale
,”
Soft Matter
11
,
4584
4591
(
2015
).
7.
Kohandel
,
M.
,
S.
Sivaloganathan
,
G.
Tenti
, and
K.
Darvish
, “
Frequency dependence of complex moduli of brain tissue using a fractional Zener model
,”
Phys. Med. Biol.
50
,
2799
2805
(
2005
).
8.
Davis
,
G. B.
,
M.
Kohandel
,
S.
Sivaloganathan
, and
G.
Tenti
, “
The constitutive properties of the brain parenchyma
,”
Med. Eng. Phys.
28
,
455
459
(
2006
).
9.
Shen
,
J. J.
,
C. G.
Li
,
H. T.
Wu
, and
M.
Kalantari
, “
Fractional order viscoelasticity in characterization for atrial tissue
,”
Korea-Australia Rheol. J.
25
,
87
93
(
2013
).
10.
Gobeaux
,
F.
,
E.
Belamie
,
G.
Mosser
,
P.
Davidson
, and
S.
Asnacios
, “
Power law rheology and strain-induced yielding in acidic solutions of type I-collagen
,”
Soft Matter
6
,
3769
3777
(
2010
).
11.
Curtis
,
D. J.
,
A.
Holder
,
N.
Badiei
,
J.
Claypole
,
M.
Walters
,
B.
Thomas
,
M.
Barrow
,
D.
Deganello
,
M. R.
Brown
,
P. R.
Williams
, and
K.
Hawkins
, “
Validation of optimal Fourier rheometry for rapidly gelling materials and its application in the study of collagen gelation
,”
J. Nonnewton. Fluid Mech.
222
,
253
259
(
2015
).
12.
Jóźwiak
,
B.
,
M.
Orczykowska
, and
M.
Dziubiński
, “
Fractional generalizations of maxwell and Kelvin-Voigt models for biopolymer characterization
,”
PLoS One
10
,
e0143090
(
2015
).
13.
Ma
,
L.
, and
G. V.
Barbosa-Cánovas
, “
Simulating viscoelastic properties of selected food gums and gum mixtures using a fractional derivative model
,”
J. Texture Stud.
27
,
307
325
(
1996
).
14.
Zhou
,
N.
, and
S. J.
Mulvaney
, “
The effect of milk fat, the ratio of casein to water, and temperature on the viscoelastic properties of rennet casein gels
,”
J. Dairy Sci.
81
,
2561
2571
(
1998
).
15.
Subramanian
,
R.
,
K.
Muthukumarappan
, and
S.
Gunasekaran
, “
Linear viscoelastic properties of regular- and reduced-fat pasteurized process cheese during heating and cooling
,”
Int. J. Food Prop.
9
,
377
393
(
2006
).
16.
Ng
,
T. S. K.
, and
G. H.
McKinley
, “
Power law gels at finite strains: The nonlinear rheology of gluten gels
,”
J. Rheol.
52
,
417
449
(
2008
).
17.
Caggioni
,
M.
,
P. T.
Spicer
,
D. L.
Blair
,
S. E.
Lindberg
, and
D. A.
Weitz
, “
Rheology and microrheology of a microstructured fluid: The gellan gum case
,”
J. Rheol.
51
,
851
865
(
2007
).
18.
Korus
,
J.
,
M.
Witczak
,
R.
Ziobro
, and
L.
Juszczak
, “
The impact of resistant starch on characteristics of gluten-free dough and bread
,”
Food Hydrocoll.
23
,
988
995
(
2009
).
19.
Moreira
,
R.
,
F.
Chenlo
, and
M. D.
Torres
, “
Rheology of commercial chestnut flour doughs incorporated with gelling agents
,”
Food Hydrocoll.
25
,
1361
1371
(
2011
).
20.
Ronda
,
F.
,
S.
Perez-Quirce
,
A.
Angioloni
, and
C.
Collar
, “
Impact of viscous dietary fibres on the viscoelastic behaviour of gluten-free formulated rice doughs: A fundamental and empirical rheological approach
,”
Food Hydrocoll.
32
,
252
262
(
2013
).
21.
Xu
,
Z.
, and
W.
Chen
, “
A fractional-order model on new experiments of linear viscoelastic creep of Hami Melon
,”
Comput. Math. Appl.
66
,
677
681
(
2013
).
22.
Jaishankar
,
A.
, and
G. H.
McKinley
, “
A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids
,”
J. Rheol.
58
,
1751
1788
(
2014
).
23.
Leocmach
,
M.
,
C.
Perge
,
T.
Divoux
, and
S.
Manneville
, “
Creep and fracture of a protein gel under stress
,”
Phys. Rev. Lett.
113
,
038303
(
2014
).
24.
Faber
,
T. J.
,
A.
Jaishankar
, and
G. H.
McKinley
, “
Describing the firmness, springiness and rubberiness of food gels using fractional calculus. Part I: Theoretical framework
,”
Food Hydrocoll.
62
,
311
324
(
2017
).
25.
Faber
,
T. J.
,
A.
Jaishankar
, and
G. H.
McKinley
, “
Describing the firmness, springiness and rubberiness of food gels using fractional calculus. Part II: Measurements on semi-hard cheese
,”
Food Hydrocoll.
62
,
325
339
(
2017
).
26.
Rich
,
J. P.
,
G. H.
McKinley
, and
P. S.
Doyle
, “
Size dependence of microprobe dynamics during gelation of a discotic colloidal clay
,”
J. Rheol.
55
,
273
299
(
2011
).
27.
Lidon
,
P.
,
L.
Villa
, and
S.
Manneville
, “
Power-law creep and residual stresses in a carbopol gel
,”
Rheol. Acta
56
,
307
323
(
2017
).
28.
Hung
,
K.-C.
,
U-S.
Jeng
, and
S.-H.
Hsu
, “
Fractal structure of hydrogels modulates stem cell behsavior
,”
ACS Macro Lett.
4
,
1056
1061
(
2015
).
29.
Chambon
,
F.
,
Z. S.
Petrovic
,
W. J.
MacKnight
, and
H. H.
Winter
, “
Rheology of model polyurethanes at the gel point
,”
Macromolecules
19
,
2146
2149
(
1986
).
30.
Winter
,
H. H.
, and
F.
Chambon
, “
Analysis of linear viscoelasticity of a crosslinking polymer at the gel point
,”
J. Rheol.
30
,
367
382
(
1986
).
31.
Durand
,
D.
,
M.
Delsanti
,
M.
Adam
, and
J. M.
Luck
, “
Frequency dependence of viscoelastic properties of branched polymers near gelation threshold
,”
Europhys. Lett.
3
,
297
301
(
1987
).
32.
Martin
,
J. E.
,
D.
Adolf
, and
J. P.
Wilcoxon
, “
Viscoelasticity of near-critical gels
,”
Phys. Rev. Lett.
61
,
2620
2623
(
1988
).
33.
Adolf
,
D.
, and
J. E.
Martin
, “
Time-cure superposition during crosslinking
,”
Macromolecules
23
,
3700
3704
(
1990
).
34.
Tirtaatmadja
,
V.
,
K. C.
Tam
, and
R. D.
Jenkins
, “
Superposition of oscillations on steady shear flow as a technique for investigating the structure of associative polymers
,”
Macromolecules
30
,
1426
1433
(
1997
).
35.
Larsen
,
T. H.
, and
E. M.
Furst
, “
Microrheology of the liquid-solid transition during gelation
,”
Phys. Rev. Lett.
100
,
146001
(
2008
).
36.
Leibler
,
L.
,
M.
Rubinstein
, and
R. H.
Colby
, “
Dynamics of reversible networks
,”
Macromolecules
24
,
4701
4707
(
1991
).
37.
Plazek
,
D. J.
, “
Dynamic mechanical and creep properties of a 23% cellulose nitrate solution; Andrade creep in polymeric systems
,”
J. Colloid Sci.
15
,
50
75
(
1960
).
38.
Hernández-Jiménez
,
A.
,
J.
Hernández-Santiago
,
A.
Macias-Garcıa
, and
J.
Sánchez-González
, “
Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model
,”
Polym. Test.
21
,
325
331
(
2002
).
39.
Friedrich
,
C.
,
H.
Schiessel
, and
A.
Blumen
, “
Constitutive behavior modeling and fractional derivatives
,”
Rheol. Ser. Adv. Flow Rheol. Non-Newtonian Fluids
8
,
429
466
(
1999
).
40.
Curro
,
J. G.
, and
P.
Pincus
, “
A theoretical basis for viscoelastic relaxation of elastomers in the long-time limit
,”
Macromolecules
16
,
559
562
(
1983
).
41.
Winter
,
H. H.
, and
M.
Mours
, “
Rheology of polymers near liquid–solid transitions
,” in
Neutron Spin Echo Spectroscopy Viscoelasticity Rheology
, edited by
B.
Ewen
, Advances in Polymer Science (
Springer
,
Berlin, Heidelberg
,
1999
).
42.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
(
Wiley
,
New York
,
1980
).
43.
Metzler
,
R.
,
W.
Schick
,
H.
Kilian
, and
T. F.
Nonnenmacher
, “
Relaxation in filled polymers: A fractional calculus approach
,”
J. Chem. Phys.
103
,
7180
7186
(
1995
).
44.
Sollich
,
P.
,
F.
Lequeux
,
P.
Hébraud
, and
M. E.
Cates
, “
Rheology of soft glassy materials
,”
Phys. Rev. Lett.
78
,
2020
2023
(
1997
).
45.
Sollich
,
P.
, “
Rheological constitutive equation for a model of soft glassy materials
,”
Phys. Rev. E
58
,
738
759
(
1998
).
46.
Colby
,
R. H.
, and
M.
Rubinstein
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
47.
Stauffer
,
D.
, and
A.
Aharony
,
Introduction to Percolation Theory
, 2nd ed. (
Taylor & Francis
,
London
,
2003
).
48.
Martin
,
J. E.
, and
D.
Adolf
, “
The sol-gel transition in chemical gels
,”
Annu. Rev. Phys. Chem.
42
,
311
339
(
1991
).
49.
Muthukumar
,
M.
, “
Screening effect on viscoelasticity near the gel point
,”
Macromolecules
22
,
4656
4658
(
1989
).
50.
Patrício
,
P.
,
C. R.
Leal
,
J.
Duarte
, and
C.
Januário
, “
Rheology of the cytoskeleton as a fractal network
,”
Phys. Rev. E
92
,
040702
(
2015
).
51.
Dahesh
,
M.
,
A.
Banc
,
A.
Duri
,
M.-H.
Morel
, and
L.
Ramos
, “
Spontaneous gelation of wheat gluten proteins in a food grade solvent
,”
Food Hydrocoll.
52
,
1
10
(
2016
).
52.
Takenaka
,
M.
,
T.
Kobayashi
,
K.
Saijo
,
H.
Tanaka
,
N.
Iwase
,
T.
Hashimoto
, and
M.
Takahashi
, “
Comparison in fractal dimension between those obtained from structure factor and viscoelasticity of gel networks of 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol in polystyrene melt at gel point
,”
J. Chem. Phys.
121
,
3323
3328
(
2004
).
53.
Matsumoto
,
T.
,
M.
Kawai
, and
T.
Masuda
, “
Viscoelastic and SAXS investigation of fractal structure near the gel point in alginate aqueous systems
,”
Macromolecules
25
,
5430
5433
(
1992
).
54.
Helmberger
,
M.
,
M.
Pienn
,
M.
Urschler
,
P.
Kullnig
,
R.
Stollberger
,
G.
Kovacs
,
A.
Olschewski
,
H.
Olschewski
, and
Z.
Bálint
, “
Quantification of tortuosity and fractal dimension of the lung vessels in pulmonary hypertension patients
,”
PLoS One
9
,
e87515
(
2014
).
55.
Mauroy
,
B.
,
M.
Filoche
,
E. R.
Weibel
, and
B.
Sapoval
, “
An optimal bronchial tree may be dangerous
,”
Nature
427
,
633
636
(
2004
).
56.
Ahmadi
,
K.
,
M.
Ahmadlou
,
M.
Rezazade
,
E.
Azad-Marzabadi
, and
F.
Sajedi
, “
Brain activity of women is more fractal than men
,”
Neurosci. Lett.
535
,
7
11
(
2013
).
57.
Carpineti
,
M.
, and
M.
Giglio
, “
Transition from semiorder to disorder in the aggregation of dense colloidal solutions
,”
Phys. Rev. Lett.
70
,
3828
3831
(
1993
).
58.
Bremer
,
L. G. B.
,
B. H.
Bijsterbosch
,
R.
Schrijvers
,
T.
Van Vliet
, and
P.
Walstra
, “
On the fractal nature of the structure of acid casein gels
,”
Colloids Surf.
51
,
159
170
(
1990
).
59.
Duval
,
P.
,
M.
Montagnat
,
F.
Grennerat
,
J.
Weiss
,
J.
Meyssonnier
, and
A.
Philip
, “
Creep and plasticity of glacier ice: A material science perspective
,”
J. Glaciol.
56
,
1059
1068
(
2010
).
60.
Paredes
,
J.
,
M. A. J.
Michels
, and
D.
Bonn
, “
Rheology across the Zero-Temperature Jamming Transition
,”
Phys. Rev. Lett.
111
,
015701
(
2013
).
61.
Andrade
,
E. N.
, “
On the viscous flow in metals, and allied phenomena
,”
Proc. R. Soc. A: Math. Phys. Sci.
84
,
1
12
(
1910
).
62.
Miguel
,
M.-C.
,
A.
Vespignani
,
M.
Zaiser
, and
S.
Zapperi
, “
Dislocation jamming and andrade creep
,”
Phys. Rev. Lett.
89
,
165501
(
2002
).
63.
Poirier
,
J.-P.
,
Creep of Crystals
(
Cambridge University
,
Cambridge
,
1985
).
64.
Cottrell
,
A. H.
, “
The time laws of creep
,”
J. Mech. Phys. Solids.
1
,
53
63
(
1952
).
65.
Ashby
,
M. F.
, and
P.
Duval
, “
The creep of polycrystalline ice
,”
Cold Reg. Sci. Technol.
11
,
285
300
(
1985
).
66.
Siebenbürger
,
M.
,
M.
Ballauff
, and
T.
Voigtmann
, “
Creep in colloidal glassses
,”
Phys. Rev. Lett.
108
,
255701
(
2012
).
67.
Sentjabrskaja
,
T.
,
P.
Chaudhuri
,
M.
Hermes
,
W. C. K.
Poon
,
J.
Horbach
,
S. U.
Egelhaaf
, and
M.
Laurati
, “
Creep and flow of glasses: Strain response linked to the spatial distribution of dynamical heterogeneities
,”
Sci. Rep.
5
,
11884
(
2015
).
68.
Coussot
,
P.
,
H.
Tabuteau
,
X.
Chateau
,
L.
Tocquer
, and
G.
Ovarlez
, “
Aging and solid or liquid behavior in pastes
,”
J. Rheol.
50
,
975
994
(
2006
).
69.
Caton
,
F.
, and
C.
Baravian
, “
Plastic behavior of some yield stress fluids: From creep to long-time yield
,”
Rheol. Acta
47
,
601
607
(
2008
).
70.
Nechad
,
H.
,
A.
Helmstetter
,
R.
El Guerjouma
, and
D.
Sornette
, “
Creep ruptures in heterogeneous materials
,”
Phys. Rev. Lett.
94
,
045501
(
2005
).
71.
Karobi
,
S. N.
,
T. L.
Sun
,
T.
Kurokawa
,
F.
Luo
,
T.
Nakajima
,
T.
Nonoyama
, and
J. P.
Gong
, “
Creep behavior and delayed fracture of tough polyampholyte hydrogels by tensile test
,”
Macromolecules
49
,
5630
5636
(
2016
).
72.
Ghiringhelli
,
E.
,
D.
Roux
,
D.
Bleses
,
H.
Galliard
, and
F.
Caton
, “
Optimal fourier rheometry: Application to the gelation of an alginate
,”
Rheol. Acta
51
,
413
420
(
2012
).
73.
Bouzid
,
M.
,
B.
Keshavarz
,
M.
Geri
,
T.
Divoux
,
E.
Del Gado
, and
G. H.
McKinley
, “
Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol
,”
J. Rheol.
62
,
1037
1050
(
2018
).
74.
Geri
,
M.
,
B.
Keshavarz
,
T.
Divoux
,
C.
Clasen
,
D. J.
Curtis
, and
G. H.
McKinley
, “
Time-Resolved mechanical spectroscopy of soft materials via optimally windowed chirps
,”
J. Rheol.
62
,
1037
1050
(
2018
).
75.
Cheriere
,
J. M.
,
L.
Belec
, and
J. L.
Gacougnolle
, “
The three successive stages of creep of PMMA between 55°C and 90°C
,”
Polym. Eng. Sci.
37
,
1664
1671
(
1997
).
76.
Carpineti
,
M.
,
M.
Giglio
, and
V.
Degiorgio
, “
Mass conservation and anticorrelation effects in the colloidal aggregation of dense solutions
,”
Phys. Rev. E
51
,
590
596
(
1995
).
77.
Cipelletti
,
L.
,
S.
Manley
,
R. C.
Ball
, and
D. A.
Weitz
, “
Universal aging features in the restructuring of fractal colloidal gels
,”
Phys. Rev. Lett.
84
,
2275
2278
(
2000
).
78.
Hilfer
,
R.
,
Applications of Fractional Calculus in Physics
(
World Scientific
,
Singapore
,
2000
).
79.
Jaishankar
,
A.
, and
G. H.
McKinley
, “
Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations
,”
Proc. R. Soc. Lond. A
469
,
20120284
(
2012
).
80.
Demirci
,
E.
, and
N.
Ozalp
, “
A method for solving differential equations of fractional order
,”
J. Comput. Appl. Math.
236
,
2754
2762
(
2012
).
81.
Blair
,
G. W. S.
,
B. C.
Veinoglou
, and
J. E.
Caffync
Limitations of the Newtonian time scale in relation to non-equilibrium rheological states and a theory of quasi-properties
,”
Proc. R. Soc. Lond. A
189
,
69
87
(
1947
).
82.
Bagley
,
R. L.
, and
P. J.
Torvik
, “
A theoretical basis for the application of fractional calculus to viscoelasticity
,”
J. Rheol.
27
,
201
210
(
1983
).
83.
Bagley
,
R. L.
, and
P. J.
Torvik
, “
On the fractional calculus model of viscoelastic behavior
,”
J. Rheol.
30
,
133
155
(
1986
).
84.
Bagley
,
R. L.
, “
Power law and fractional calculus model of viscoelasticity
,”
AIAA J.
27
,
1412
1417
(
1989
).
85.
Wyss
,
H. M.
,
J.
Innerlohinger
,
L. P.
Meier
,
L. J.
Gauckler
, and
O.
Glatter
, “
Small-angle static light scattering of concentrated silica suspensions during in situ destabilization
,”
J. Colloid Interface Sci.
271
,
388
399
(
2004
).
86.
Tamborini
,
E.
, and
L.
Cipelletti
, “
Multiangle static and dynamic light scattering in the intermediate scattering angle range
,”
Rev. Sci. Instrum.
83
,
093106
(
2012
).
87.
Aime
,
S.
,
L.
Ramos
,
J. M.
Fromental
,
G.
Prevot
,
R.
Jelinek
, and
L.
Cipelletti
, “
A stress-controlled shear cell for small-angle light scattering and microscopy
,”
Rev. Sci. Instrum.
87
,
123907
(
2016
).
88.
Aime
,
S.
,
L.
Ramos
, and
L.
Cipelletti
, “
Microscopic dynamics and failure precursors of a gel under mechanical load
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
3587
3592
(
2018
).
89.
Neutron, X-Rays and Light. Scattering Methods Applied to Soft Condensed Matter
, edited by
T.
Zemb
and
P.
Lindner
, 1st ed. (
North-Holland
,
Amsterdam
,
2002
).
90.
B. J.
Berne
, and
R.
Pecora
,
Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics
(
Courier Corporation
,
2013
).
91.
Bressler
,
I.
,
J.
Kohlbrecher
, and
A. F.
Thunemann
, “
SASfit: A tool for small-angle scattering data analysis using a library of analytical expressions
,”
J. Appl. Crystallogr.
48
,
1587
1598
(
2015
).
92.
Manley
,
S.
,
J. M.
Skotheim
,
L.
Mahadevan
, and
D. A.
Weitz
, “
Gravitational collapse of colloidal gels
,”
Phys. Rev. Lett.
94
,
218302
(
2005
).
93.
Carpineti
,
M.
, and
M.
Giglio
, “
Spinodal-type dynamics in fractal aggregation of colloidal clusters
,”
Phys. Rev. Lett.
68
,
3327
3330
(
1992
).
94.
Cipelletti
,
L.
, and
L.
Ramos
, “
Slow dynamics in glassy soft matter
,”
J. Phys.: Condens. Matter
17
,
R253
R285
(
2005
).
95.
Manley
,
S.
,
B.
Davidovitch
,
N. R.
Davies
,
L.
Cipelletti
,
A. E.
Bailey
,
R. J.
Christianson
,
U.
Gasser
,
V.
Prasad
,
P. N.
Segre
,
M. P.
Doherty
,
S.
Sankaran
,
A. L.
Jankovsky
,
B.
Shiley
,
J.
Bowen
,
J.
Eggers
,
C.
Kurta
,
T.
Lorik
, and
D. A.
Weitz
, “
Time-dependent strength of colloidal gels
,”
Phys. Rev. Lett.
95
,
048302
(
2005
).
96.
Koumakis
,
N.
, and
G.
Petekidis
, “
Two step yielding in attractive colloids: Transition from gels to attractive glasses
,”
Soft. Matter
7
,
2456
2470
(
2011
).
97.
Guo
,
H.
,
S.
Ramakrishnan
,
J. L.
Harden
, and
R. L.
Leheny
, “
Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations
,”
J. Chem. Phys.
135
,
154903
(
2011
).
98.
Calzolari
,
D. C. E.
,
I.
Bischofberger
,
F.
Nazzani
, and
V.
Trappe
, “
Interplay of coarsening, aging, and stress hardening impacting the creep behavior of a colloidal gel
,”
J. Rheol.
61
,
817
831
(
2017
).
99.
Evans
,
R. M. L.
,
M.
Tassieri
,
D.
Auhl
, and
T. A.
Waigh
, “
Direct conversion of rheological compliance measurements into storage and loss moduli
,”
Phys. Rev. E
80
,
012501
(
2009
).
100.
Park
,
J. D.
,
K. H.
Ahn
, and
N. J.
Wagner
, “
Structure-rheology relationship for a homogeneous colloidal gel under shear startup
,”
J. Rheol.
61
,
117
137
(
2017
).
101.
Colombo
,
J.
, and
E.
Del Gado
, “
Stress localization, stiffening, and yielding in a model colloidal gel
,”
J. Rheol.
58
,
1089
1116
(
2014
).
102.
Bouzid
,
M.
, and
E.
Del Gado
, “
Network topology in soft gels: Hardening and softening materials
,”
Langmuir
34
,
773
781
(
2018
).
103.
Jamali
,
S.
,
G. H.
McKinley
, and
R. C.
Armstrong
, “
Microstructural rearrangements and their rheological implications in a model thixotropic elastoviscoplastic fluid
,”
Phys. Rev. Lett.
118
,
048003
(
2017
).
104.
Mohraz
,
A.
, and
M. J.
Solomon
, “
Orientation and rupture of fractal colloidal gels during start-up of steady shear flow
,”
J. Rheol.
49
,
657
681
(
2005
).
105.
Vermant
,
J.
, and
M. J.
Solomon
, “
Flow-induced structure in colloidal suspensions
,”
J. Phys.: Condens. Matter
17
,
R187
R216
(
2005
).
106.
Kim
,
J. M.
,
A. P. R.
Eberle
,
A. K.
Gurnon
,
L.
Porcar
, and
N. J.
Wagner
, “
The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)
,”
J. Rheol.
58
,
1301
1328
(
2014
).
107.
Falk
,
M. L.
, and
J. S.
Langer
, “
Dynamics of viscoplastic deformation in amorphous solids
,”
Phys. Rev. E
57
,
7192
7205
(
1998
).
108.
Basu
,
A.
,
Q.
Wen
,
X.
Mao
,
T. C.
Lubensky
,
P. A.
Janmey
, and
A. G.
Yodh
, “
Nonaffine displacements in flexible polymer networks
,”
Macromolecules
44
,
1671
1679
(
2011
).
109.
DiDonna
,
B. A.
, and
T. C.
Lubensky
, “
Nonaffine correlations in random elastic media
,”
Phys. Rev. E
72
,
066619
(
2005
).
110.
Léonforte
,
F.
,
A.
Tanguy
,
J. P.
Wittmer
, and
J.-L.
Barrat
, “
Inhomogeneous elastic response of silica glass
,”
Phys. Rev. Lett.
97
,
055501
(
2006
).
111.
Hébraud
,
P.
,
F.
Lequeux
,
J. P.
Munch
, and
D. J.
Pine
, “
Yielding and rearrangements in disordered emulsions
,”
Phys. Rev. Lett.
78
,
4657
4660
(
1997
).
112.
Petekidis
,
G.
,
A.
Moussaïd
, and
P. N.
Pusey
, “
Rearrangements in hard-sphere glasses under oscillatory shear strain
,”
Phys. Rev. E
66
,
051402
(
2002
).
113.
Laurati
,
M.
,
S. U.
Egelhaaf
, and
G.
Petekidis
, “
Plastic rearrangements in colloidal gels investigated by LAOS and LS-Echo
,”
J. Rheol.
58
,
1395
1417
(
2014
).
114.
Rogers
,
M. C.
,
K.
Chen
,
L.
Andrzejewski
,
S.
Narayanan
,
S.
Ramakrishnan
,
R. L.
Leheny
, and
J. L.
Harden
, “
Echoes in x-ray speckles track nanometer-scale plastic events in colloidal gels under shear
,”
Phys. Rev. E
90
,
062310
(
2014
).
115.
Colombo
,
J.
,
A.
Widmer-Cooper
, and
E.
Del Gado
, “
Microscopic picture of cooperative processes in restructuring gel networks
,”
Phys. Rev. Lett.
110
,
198301
(
2013
).
116.
Zia
,
R. N.
,
B. J.
Landrum
, and
W. B.
Russel
, “
A micro-mechanical study of coarsening and rheology of colloidal gels: Cage building, cage hopping, and Smoluchowski’s ratchet
,”
J. Rheol.
58
,
1121
1157
(
2014
).
117.
Landrum
,
B. J.
,
W. B.
Russel
, and
R. N.
Zia
, “
Delayed yield in colloidal gels: Creep, flow, and re-entrant solid regimes
,”
J. Rheol.
60
,
783
807
(
2016
).
118.
Fielding
,
S. M.
,
P.
Sollich
, and
M. E.
Cates
, “
Aging and rheology in soft materials
,”
J. Rheol.
44
,
323
369
(
2000
).
You do not currently have access to this content.