In this study, the normal stress in magnetorheological polymer gel (MRPG) under large amplitude oscillatory shear was investigated using experiments and particle-level simulations. Under large amplitude oscillatory shear, an intensely oscillating normal stress was measured with a period of exactly half the strain period. As the amplitude of the strain increased, the peak of the normal stress increased and the trough decreased. Changes in the normal stress were mainly caused by two factors: the Poynting effect, in which shear produces a normal force perpendicular to the shear direction, and magnetic-induced normal stress, which changes with the particle structure. In MRPG, both effects are related to the particle structure. The particle structure in MRPG with different strain was calculated and the simulation results show that the amplitude of the structural strain in oscillatory shearing is less than that of the applied strain. Additionally, a phase difference was observed between the structural strain and the applied strain. Based on the calculated particle structure, the change in the normal stress was obtained and found to agree well with the experimental results.

1.
Mitsumata
,
T.
, and
N.
Abe
, “
Magnetic-field sensitive gels with wide modulation of dynamic modulus
,”
Chem. Lett.
38
(
9
),
922
923
(
2009
).
2.
Wilson
,
M. J.
,
A.
Fuchs
, and
F.
Gordaninejad
, “
Development and characterization of magnetorheological polymer gels
,”
J. Appl. Polym. Sci.
84
(
14
),
2733
2742
(
2002
).
3.
Xu
,
Y. G.
,
X. L.
Gong
,
S. H.
Xuan
,
W.
Zhang
, and
Y. C.
Fan
, “
A high-performance magnetorheological material: preparation, characterization and magnetic-mechanic coupling properties
,”
Soft Matter
7
(
11
),
5246
5254
(
2011
).
4.
Shkel
,
Y. M.
, and
D. J.
Klingenberg
, “
A thermodynamic approach to field-induced stresses in electro- and magnetoactive composites
,”
Int. J. Mod. Phys. B
15
(
6-7
),
795
802
(
2001
).
5.
Kim
,
P.
,
J.-I.
Lee
, and
J.
Seok
, “
Analysis of a viscoplastic flow with field-dependent yield stress and wall slip boundary conditions for a magnetorheological (MR) fluid
,”
J. Non-Newtonian Fluid Mech.
204
,
72
86
(
2014
).
6.
Laun
,
H. M.
,
C.
Gabriel
, and
C.
Kieburg
, “
Wall material and roughness effects on transmittable shear stresses of magnetorheological fluids in plate-plate magnetorheometry
,”
Rheol. Acta
50
(
2
),
141
157
(
2011
).
7.
Pessot
,
G.
,
H.
Loewen
, and
A. M.
Menzel
, “
Dynamic elastic moduli in magnetic gels: Normal modes and linear response
,”
J. Chem. Phys.
145
(
10
),
104904
(
2016
).
8.
Jiang
,
J.
,
Y.
Tian
,
D.
Ren
, and
Y.
Meng
, “
An experimental study on the normal stress of magnetorheological fluids
,”
Smart Mater. Struct.
20
(
8
),
085012
(
2011
).
9.
Yao
,
X.
,
M.
Yu
, and
J.
Fu
, “
Magnetic-enhanced normal force of magnetorheological fluids
,”
Smart Mater. Struct.
24
(
3
),
035001
(
2015
).
10.
Yazid
,
I. I. M.
,
S. A.
Mazlan
,
F.
Imaduddin
,
H.
Zamzuri
,
S. B.
Choi
, and
T.
Kikuchi
, “
An investigation on the mitigation of end-stop impacts in a magnetorheological damper operated by the mixed mode
,”
Smart Mater. Struct.
25
(
12
),
125005
(
2016
).
11.
Lambropoulos
,
J. C.
,
C.
Miao
, and
S. D.
Jacobs
, “
Magnetic field effects on shear and normal stresses in magnetorheological finishing
,”
Opt. Express
18
(
19
),
19713
19723
(
2010
).
12.
Esmaeilzare
,
A.
,
S. M.
Rezaei
, and
B.
Ramezanzadeh
, “
Corrosion and magnetic properties of encapsulated carbonyl iron particles in aqueous suspension by inorganic thin films for magnetorheological finishing application
,”
Appl. Surf. Sci.
436
,
1200
1212
(
2018
).
13.
Liu
,
T.
,
Y.
Xu
,
X.
Gong
,
H.
Pang
, and
S.
Xuan
, “
Magneto-induced normal stress of magnetorheological plastomer
,”
AIP Adv.
3
(
8
),
082122
(
2013
).
14.
Ju
,
B. X.
,
M.
Yu
,
J.
Fu
,
X.
Zheng
, and
S. Z.
Liu
, “
Magnetic field-dependent normal force of magnetorheological gel
,”
Ind. Eng. Chem. Res.
52
(
33
),
11583
11589
(
2013
).
15.
Liao
,
G.
,
X.
Gong
,
S.
Xuan
,
C.
Guo
, and
L.
Zong
, “
Magnetic-field-induced normal force of magnetorheological elastomer under compression status
,”
Ind. Eng. Chem. Res.
51
(
8
),
3322
3328
(
2012
).
16.
de Vicente
,
J.
,
F.
Gonzalez-Caballero
,
G.
Bossis
, and
O.
Volkova
, “
Normal force study in concentrated carbonyl iron magnetorheological suspensions
,”
J. Rheol.
46
(
5
),
1295
1303
(
2002
).
17.
Kordonski
,
W.
, and
S.
Gorodkin
, “
The behavior of a magnetorheological (MR) fluid under compressive deformation
,”
J. Rheol.
60
(
1
),
129
139
(
2016
).
18.
Ruiz-Lopez
,
J. A.
,
Z. W.
Wang
,
R.
Hidalgo-Alvarez
, and
J.
de Vicente
, “
Simulations of model magnetorheological fluids in squeeze flow mode
,”
J. Rheol.
61
(
5
),
871
881
(
2017
).
19.
Chen
,
P.
,
L.-J.
Qian
,
X.-X.
Bai
, and
S.-B.
Choi
, “
Velocity-dependent characteristics of magnetorheological fluids in squeeze mode considering the hydrodynamic and the magnetic field interactions
,”
J. Rheol.
61
(
3
),
455
465
(
2017
).
20.
Lopez-Lopez
,
M. T.
,
P.
Kuzhir
,
J. D. G.
Duran
, and
G.
Bossis
, “
Normal stresses in a shear flow of magnetorheological suspensions: Viscoelastic versus Maxwell stresses
,”
J. Rheol.
54
(
5
),
1119
1136
(
2010
).
21.
de Vicente
,
J.
,
J. A.
Ruiz-Lopez
,
E.
Andablo-Reyes
,
J. P.
Segovia-Gutierrez
, and
R.
Hidalgo-Alvarez
, “
Squeeze flow magnetorheology
,”
J. Rheol.
55
(
4
),
753
779
(
2011
).
22.
Ruiz-Lopez
,
J. A.
,
R.
Hidalgo-Alvarez
, and
J.
de Vicente
, “
A micromechanical model for magnetorheological fluids under slow compression
,”
Rheol. Acta
55
(
3
),
215
221
(
2016
).
23.
Kuzhir
,
P.
,
M. T.
Lopez-Lopez
,
G.
Vertelov
,
C.
Pradille
, and
G.
Bossis
, “
Shear and squeeze rheometry of suspensions of magnetic polymerized chains
,”
Rheol. Acta
47
(
2
),
179
187
(
2008
).
24.
Rodriguez-Lopez
,
J.
,
P.
Castro Blazquez
,
L.
Elvira
,
F.
Montero de Espinosa
,
J.
Ramirez
, and
J.
de Vicente
, “
On the yielding behaviour in magnetorheology using ultrasounds, shear and normal stresses, and optical microscopy
,”
J. Phys. D: Appl. Phys.
48
(
46
),
465503
(
2015
).
25.
Zubarev
,
A. Y.
,
D. N.
Chirikov
,
D. Y.
Borin
, and
G. V.
Stepanov
, “
Hysteresis of the magnetic properties of soft magnetic gels
,”
Soft Matter
12
(
30
),
6473
6480
(
2016
).
26.
Tian
,
Y.
,
J.
Jiang
,
Y.
Meng
, and
S.
Wen
, “
A shear thickening phenomenon in magnetic field controlled-dipolar suspensions
,”
Appl. Phys. Lett.
97
(
15
),
151904
(
2010
).
27.
Bossis
,
G.
,
Y.
Grasselli
,
A.
Meunier
, and
O.
Volkova
, “
Outstanding magnetorheological effect based on discontinuous shear thickening in the presence of a superplastifier molecule
,”
Appl. Phys. Lett.
109
(
11
),
111902
(
2016
).
28.
Labiausse
,
V.
,
R.
Hohler
, and
S.
Cohen-Addad
, “
Shear induced normal stress differences in aqueous foams
,”
J. Rheol.
51
(
3
),
479
492
(
2007
).
29.
Pan
,
Z. C.
,
H.
de Cagny
,
M.
Habibi
, and
D.
Bonn
, “
Normal stresses in shear thickening granular suspensions
,”
Soft Matter
13
(
20
),
3734
3740
(
2017
).
30.
Poulos
,
A. S.
,
F.
Renou
,
A. R.
Jacob
,
N.
Koumakis
, and
G.
Petekidis
, “
Large amplitude oscillatory shear (LAOS) in model colloidal suspensions and glasses: frequency dependence
,”
Rheol. Acta
54
(
8
),
715
724
(
2015
).
31.
Aktas
,
S.
,
D. M.
Kalyon
,
B. M.
Marin-Santibanez
, and
J.
Perez-Gonzalez
, “
Shear viscosity and wall slip behavior of a viscoplastic hydrogel
,”
J. Rheol.
58
(
2
),
513
535
(
2014
).
32.
Poynting
,
J. H.
, “
On pressure perpendicular to the shear planes in finite pure shears, and on the lenghtening of loaded wires when twisted
,”
Proc. R. Soc. Lond. A
82
(
557
),
546
559
(
1909
).
33.
Janmey
,
P. A.
,
M. E.
Mccormick
,
S.
Rammensee
,
J. L.
Leight
,
P. C.
Georges
, and
F. C.
Mackintosh
, “
Negative normal stress in semiflexible biopolymer gels
,”
Nat. Mater.
6
(
1
),
48
51
(
2007
).
34.
de Cagny
,
H. C. G.
,
B. E.
Vos
,
M.
Vahabi
,
N. A.
Kurniawan
,
M.
Doi
,
G. H.
Koenderink
,
F. C.
MacKintosh
, and
D.
Bonn
, “
Porosity governs normal stresses in polymer gels
,”
Phys. Rev. Lett.
117
(
21
),
217802
(
2016
).
35.
Adkins
,
J. E.
, and
R. S.
Rivlin
, “
Large elastic deformations of isotropic materials. 10. Reinforcement by inextensible cords
,”
Philos. Trans. R. Soc. Lond. A
248
(
944
),
201
223
(
1955
).
36.
Liu
,
T. X.
,
X. L.
Gong
,
Y. G.
Xu
,
S. H.
Xuan
, and
W. Q.
Jiang
, “
Simulation of magneto-induced rearrangeable microstructures of magnetorheological plastomers
,”
Soft Matter
9
(
42
),
10069
10080
(
2013
).
37.
Melle
,
S.
,
O. G.
Calderon
,
M. A.
Rubio
, and
G. G.
Fuller
, “
Rotational dynamics in dipolar colloidal suspensions: video microscopy experiments and simulations results
,”
J. Non-Newtonian Fluid Mech.
102
(
2
),
135
148
(
2002
).
38.
Klingenberg
,
D. J.
,
C. H.
Olk
,
M. A.
Golden
, and
J. C.
Ulicny
, “
Effects of nonmagnetic interparticle forces on magnetorheological fluids
,”
J. Phys. Condens. Matter
22
(
32
),
324101
(
2010
).
39.
See the supplementary material at https://doi.org/10.1122/1.5030952 for the adhesion performance, particle structure, repeatability, Fourier rheology spectrum, normal stress with angles of structuration, and calculation parameters of MRPG.

Supplementary Material

You do not currently have access to this content.