Hydrophobically modified telechelic associative polymers (TAPs) composed of hydrophilic backbone and two hydrophobic end groups can form dynamic transient networks in water and have been widely used as thickeners for improving solution rheological properties in many industrial fields. In this work, we designed and prepared a novel telechelic associative model polymer (FcC11AzoTAP) end-functionalized by photo-responsive azobenzene (Azo) unit along with the redox-responsive ferrocene extremity, which was used to investigate the effects of stimuli responsive behaviors such as redox reaction or/and photo isomerization of end groups on its solution aggregation and rheological properties. It has been demonstrated that the network structures and rheological properties of FcC11AzoTAP aqueous solutions can be readily tuned by the magnitude of stimuli-responsive hydrophobicity change of end groups to a certain degree. Moreover, a rearrangement of network through bridge to inactive loop and/or pending arm transitions is proposed to describe the dense to sparse network conversion. This work will not only provide new insights into the effects of end groups on the network structure and rheological properties of solution but it also opens a new perspective for some special applications of TAPs in industrial fields.

1.
Tanaka
,
F.
, and
S.
Edwards
, “
Viscoelastic properties of physically crosslinked networks: Part 3. Time-dependent phenomena
,”
J. Non-Newtonian Fluid Mech.
43
,
289
309
(
1992
).
2.
Tanaka
,
F.
, and
S. F.
Edwards
, “
Viscoelastic properties of physically crosslinked networks. 1. Transient network theory
,”
Macromolecules
25
,
1516
1523
(
1992
).
3.
Annable
,
T.
,
R.
Buscall
,
R.
Ettelaie
, and
D.
Whittlestone
, “
The rheology of solutions of associating polymers: Comparison of experimental behavior with transient network theory
,”
J. Rheol.
37
,
695
726
(
1993
).
4.
Suzuki
,
S.
,
T.
Uneyama
,
T.
Inoue
, and
H.
Watanabe
, “
Nonlinear rheology of telechelic associative polymer networks: Shear thickening and thinning behavior of hydrophobically modified ethoxylated urethane (HEUR) in aqueous solution
,”
Macromolecules
45
,
888
898
(
2012
).
5.
Uneyama
,
T.
,
S.
Suzuki
, and
H.
Watanabe
, “
Concentration dependence of rheological properties of telechelic associative polymer solutions
,”
Phys. Rev. E
86
,
031802
(
2012
).
6.
Suzuki
,
S.
,
T.
Uneyama
, and
H.
Watanabe
, “
Concentration dependence of nonlinear rheological properties of hydrophobically modified ethoxylated urethane aqueous solutions
,”
Macromolecules
46
,
3497
3504
(
2013
).
7.
Zhuge
,
F.
,
L. G. D.
Hawke
,
C.-A.
Fustin
,
J.-F.
Gohy
, and
E.
van Ruymbeke
, “
Decoding the linear viscoelastic properties of model telechelic metallo-supramolecular polymers
,”
J. Rheol.
61
,
1245
1262
(
2017
).
8.
Kaczmarski
,
J. P.
, and
J. E.
Glass
, “
Synthesis and solution properties of hydrophobically modified ethoxylated urethanes with variable oxyethylene spacer lengths
,”
Macromolecules
26
,
5149
5156
(
1993
).
9.
Dai
,
S.
,
S. T.
Sio
,
K. C.
Tam
, and
R. D.
Jenkins
, “
Rheology and aggregation behavior of hydrophobically modified urethane ethoxylate in ethylene glycol-water mixtures
,”
Macromolecules
36
,
6260
6266
(
2003
).
10.
Elliott
,
P. T.
,
L.-l.
Xing
,
W. H.
Wetzel
, and
J. E.
Glass
, “
Influence of terminal hydrophobe branching on the aqueous solution behavior of model hydrophobically modified ethoxylated urethane associative thickeners
,”
Macromolecules
36
,
8449
8460
(
2003
).
11.
Kaneda
,
I.
,
T.
Koga
, and
F.
Tanaka
, “
Rheological properties of physical gel formed by hydrophobically modified urethane ethoxylate (HEUR) associative polymers in methanol–water mixtures
,”
Rheol. Acta
51
,
89
96
(
2012
).
12.
Liao
,
X.
,
G.
Chen
,
X.
Liu
,
W.
Chen
,
F.
Chen
, and
M.
Jiang
, “
Photoresponsive pseudopolyrotaxane hydrogels based on competition of host–guest interactions
,”
Angew. Chem.
122
,
4511
4515
(
2010
).
13.
Xiao
,
Z.-P.
,
Z.-H.
Cai
,
H.
Liang
, and
J.
Lu
, “
Amphiphilic block copolymers with aldehyde and ferrocene-functionalized hydrophobic block and their redox-responsive micelles
,”
J. Mater. Chem.
20
,
8375
8381
(
2010
).
14.
Yan
,
Q.
,
J.
Yuan
,
Z.
Cai
,
Y.
Xin
,
Y.
Kang
, and
Y.
Yin
, “
Voltage-responsive vesicles based on orthogonal assembly of two homopolymers
,”
J. Am. Chem. Soc.
132
,
9268
9270
(
2010
).
15.
Hu
,
J.
,
H.
Yu
,
L. H.
Gan
, and
X.
Hu
, “
Photo-driven pulsating vesicles from self-assembled lipid-like azopolymers
,”
Soft Matter
7
,
11345
11350
(
2011
).
16.
Chang
,
X.
,
R.
Dong
,
B.
Ren
,
Z.
Cheng
,
J.
Peng
, and
Z.
Tong
, “
Novel ferrocenyl-terminated linear–dendritic amphiphilic block copolymers: Synthesis, redox-controlled reversible self-assembly, and oxidation-controlled release
,”
Langmuir
30
,
8707
8716
(
2014
).
17.
Huang
,
Y.
,
R.
Dong
,
X.
Zhu
, and
D.
Yan
, “
Photo-responsive polymeric micelles
,”
Soft Matter
10
,
6121
6138
(
2014
).
18.
Yang
,
R.
,
S.
Peng
,
W.
Wan
, and
T. C.
Hughes
, “
Azobenzene based multistimuli responsive supramolecular hydrogels
,”
J. Mater. Chem. C
2
,
9122
9131
(
2014
).
19.
Chang
,
X.
,
Z.
Cheng
,
B.
Ren
,
R.
Dong
,
J.
Peng
,
S.
Fu
, and
Z.
Tong
, “
Voltage-responsive reversible self-assembly and controlled drug release of ferrocene-containing polymeric superamphiphiles
,”
Soft Matter
11
,
7494
7501
(
2015
).
20.
Ueki
,
T.
,
Y.
Nakamura
,
R.
Usui
,
Y.
Kitazawa
,
S.
So
,
T. P.
Lodge
, and
M.
Watanabe
, “
Photoreversible gelation of a triblock copolymer in an ionic liquid
,”
Angew. Chem. Int. Ed.
54
,
3018
3022
(
2015
).
21.
Peng
,
J.
,
R.
Dong
,
B.
Ren
,
X.
Chang
, and
Z.
Tong
, “
Novel hydrophobically modified ethoxylated urethanes end-capped by Percec-type alkyl substituted benzyl alcohol dendrons: Synthesis, characterization, and rheological behavior
,”
Macromolecules
47
,
5971
5981
(
2014
).
22.
Chang
,
X.
,
Z.
Du
,
F.
Hu
,
Z.
Cheng
,
B.
Ren
,
S.
Fu
, and
Z.
Tong
, “
Ferrocene-functionalized hydrophobically modified ethoxylated urethane: Redox-responsive controlled self-assembly and rheological behavior in aqueous solution
,”
Langmuir
32
,
12137
12145
(
2016
).
23.
Du
,
Z.
,
B.
Ren
,
X.
Chang
,
R.
Dong
,
J.
Peng
, and
Z.
Tong
, “
Aggregation and rheology of an azobenzene-functionalized hydrophobically modified ethoxylated urethane in aqueous solution
,”
Macromolecules
49
,
4978
4988
(
2016
).
24.
Dong
,
R.
,
J.
Peng
,
X.
Chang
,
Q.
Zhang
,
L.
Hong
, and
B.
Ren
, “
Rheology of a spiropyran functionalized hydrophobically modified ethoxylated urethane in aqueous solution
,”
J. Rheol.
61
,
107
116
(
2017
).
25.
Haberhauer
,
G.
, and
C.
Kallweit
, “
A bridged azobenzene derivative as a reversible, light-induced chirality switch
,”
Angew. Chem. Int. Ed.
49
,
2418
2421
(
2010
).
26.
Probst
,
C.
,
C.
Meichner
,
K.
Kreger
,
L.
Kador
,
C.
Neuber
, and
H.-W.
Schmidt
, “
Athermal azobenzene-based nanoimprint lLithography
,”
Adv. Mater.
28
,
2624
2628
(
2016
).
27.
Zhou
,
H.
,
C.
Xue
,
P.
Weis
,
Y.
Suzuki
,
S.
Huang
,
K.
Koynov
,
G. K.
Auernhammer
,
R.
Berger
,
H.-J.
Butt
, and
S.
Wu
, “
Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions
,”
Nat. Chem.
9
,
145
151
(
2017
).
28.
Sakai
,
H.
,
Y.
Orihara
,
H.
Kodashima
,
A.
Matsumura
,
T.
Ohkubo
,
K.
Tsuchiya
, and
M.
Abe
, “
Photoinduced reversible change of fluid viscosity
,”
J. Am. Chem. Soc.
127
,
13454
13455
(
2005
).
29.
Du
,
Z.
,
B.
Ren
,
X.
Chang
,
R.
Dong
, and
Z.
Tong
, “
An end-bifunctionalized hydrophobically modified ethoxylated urethane model polymer: Multiple stimuli-responsive aggregation and rheology in aqueous solution
,”
Macromolecules
50
,
1688
1699
(
2017
).
30.
Li
,
C.
,
B.
Ren
,
Y.
Zhang
,
Z.
Cheng
,
X.
Liu
, and
Z.
Tong
, “
A novel ferroceneylazobenzene self-assembled monolayer on an ITO electrode: photochemical and electrochemical behaviors
,”
Langmuir
24
,
12911
12918
(
2008
).
31.
Ke
,
K.
,
Z.
Du
,
X.
Chang
, and
B.
Ren
, “
A dual stimuli-responsive amphiphilic polymer: Reversible self-assembly and rate-controlled drug release
,”
Colloid Polym. Sci.
295
,
1851
1861
(
2017
).
32.
Wang
,
F.
,
J.
Peng
,
R.
Dong
,
X.
Chang
,
B.
Ren
, and
Z.
Tong
, “
Highly efficient hydrophobically modified ethoxylated urethanes (HEURs) end-functionalized by two-tail dendritic hydrophobes: Synthesis, solution rheological behavior and thickening in latex
,”
Colloids Surf. A
502
,
114
120
(
2016
).
33.
Du
,
Z.
,
F.
Wang
,
X.
Chang
,
J.
Peng
, and
B.
Ren
, “
Influence of substituted structure of Percec-type mini-dendritic end groups on aggregation and rheology of hydrophobically modified ethoxylated urethanes (HEURs) in aqueous solution
,”
Polymer
135
,
131
141
(
2018
).
34.
Lafleche
,
F.
,
D.
Durand
, and
T.
Nicolai
, “
Association of adhesive spheres formed by hydrophobically end-capped PEO. 1. Influence of the presence of single end-capped PEO
,”
Macromolecules
36
,
1331
1340
(
2003
).
35.
Cicciarelli
,
B. A.
,
T. A.
Hatton
, and
K. A.
Smith
, “
Dynamic surface tension behavior in a photoresponsive surfactant system
,”
Langmuir
23
,
4753
4764
(
2007
).
36.
Sava
,
I.
,
A.-M.
Resmerita
,
G.
Lisa
,
V.
Damian
, and
N.
Hurduc
, “
Synthesis and photochromic behavior of new polyimides containing azobenzene side groups
,”
Polymer
49
,
1475
1482
(
2008
).
37.
Xu
,
R.
,
M. A.
Winnik
,
F.
Hallett
,
G.
Riess
, and
M. D.
Croucher
, “
Light-scattering study of the association behavior of styrene-ethylene oxide block copolymers in aqueous solution
,”
Macromolecules
24
,
87
93
(
1991
).
38.
Nguyen-Misra
,
M.
, and
W. L.
Mattice
, “
Micellization and gelation of symmetric triblock copolymers with insoluble end blocks
,”
Macromolecules
28
,
1444
1457
(
1995
).
39.
Chassenieux
,
C.
,
T.
Nicolai
, and
D.
Durand
, “
Association of hydrophobically end-capped poly (ethylene oxide)
,”
Macromolecules
30
,
4952
4958
(
1997
).
40.
Chassenieux
,
C.
,
T.
Nicolai
,
J. F.
Tassin
,
D.
Durand
,
J. F.
Gohy
, and
R.
Jérôme
, “
Association of telechelic ionomers in apolar solvents
,”
Macromol. Rapid Commun.
22
,
1216
1232
(
2001
).
41.
Xu
,
B.
,
A.
Yekta
,
L.
Li
,
Z.
Masoumi
, and
M. A.
Winnik
, “
The functionality of associative polymer networks: the association behavior of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in aqueous solution
,”
Colloids Surf. A
112
,
239
250
(
1996
).
42.
Tirtaatmadja
,
V.
,
K.
Tam
, and
R.
Jenkins
, “
Superposition of oscillations on steady shear flow as a technique for investigating the structure of associative polymers
,”
Macromolecules
30
,
1426
1433
(
1997
).
43.
Park
,
G. W.
, and
G.
Ianniruberto
, “
A new stochastic simulation for the rheology of telechelic associating polymers
,”
J. Rheol.
61
,
1293
1305
(
2017
).
44.
Rubinstein
,
M.
, and
R.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
45.
Liao
,
D.
,
S.
Dai
, and
K. C.
Tam
, “
Interaction between fluorocarbon end-capped poly(ethylene oxide) and cyclodextrins
,”
Macromolecules
40
,
2936
2945
(
2007
).
46.
Matia-Merino
,
L.
,
K. K. T.
Goh
, and
H.
Singh
, “
A natural shear-thickening water-soluble polymer from the fronds of the black tree fern, Cyathea medullaris: Influence of salt, pH and temperature
,”
Carbohydr. Polym.
87
,
131
138
(
2012
).
47.
Zhang
,
Z.
,
C.
Huang
,
R. A.
Weiss
, and
Q.
Chen
, “
Association energy in strongly associative polymers
,”
J. Rheol.
61
,
1199
1207
(
2017
).
48.
Chassenieux
,
C.
,
T.
Nicolai
, and
L.
Benyahia
, “
Rheology of associative polymer solutions
,”
Curr. Opin. Colloid Interface Sci.
16
,
18
26
(
2011
).
49.
Ueki
,
T.
,
R.
Usui
,
Y.
Kitazawa
,
T. P.
Lodge
, and
M.
Watanabe
, “
Thermally reversible ion gels with photohealing properties based on triblock copolymer self-assembly
,”
Macromolecules
48
,
5928
5933
(
2015
).
50.
See supplementary material at https://doi.org/10.1122/1.5030981 for the synthetic route and characterizations of FcC11AzoOH end capper and FcC11AzoTAP polymer; the standard curve of FcC11AzoOH in DMF obtained from the maximum absorbance at 350 nm; the surface tension measurements of FcC11AzoTAP aqueous solution; and the additional rheological data of FcC11AzoTAP aqueous solution before and after exposure to different stimuli.

Supplementary Material

You do not currently have access to this content.