Partially hydrolyzed polyacrylamide (HPAM) is one of the most widely used polymers for enhanced oil recovery operations. However, high temperature and high salinity in oil reservoirs restrict its functionality and performance. To alleviate this, incorporating fumed silica nanoparticles (NPs) in HPAM solutions was found to be very effective in harsh oil reservoir conditions to improve the efficiency of polymer flooding. Studying the flow behavior of hybrid polymer and fumed silica NP solutions under real reservoir conditions can be very challenging and hard to achieve due to continuously converging and diverging flow through porous structures. In this regard, rheological analysis of such systems under well-controlled flow histories within the capability of rotational rheometers can be of great importance to fully understand the mechanical response of these hybrid solution systems. In this study, two types of fumed silica NPs with different surface chemistries and two types of HPAM polymers with different molecular weights were dispersed/dissolved in deionized water. Linear viscoelastic properties of the hybrid solution systems were studied based on their step-stress (creep) and small amplitude oscillatory shear responses. As deformation in porous media can be rapid and large, consideration of nonlinear viscoelastic properties can be very crucial. The stress decomposition method and Lissajous–Bowditch curves were used to describe the intercycle and intracycle shear-thickening and strain-stiffening ratios quantitatively and qualitatively. In brief, linear and nonlinear rheology conjugated with thermogravimetric analysis and cryo-scanning electron microscopy imaging enabled us to characterize viscoelastic properties of the hybrid systems and link our observations to microstructural features. Through polymer bridging, the slightly hydrophobic fumed silica NPs (AEROSIL R816) had a unique ability to form interconnected, predominately elastic network structures in contrast to large agglomerated structures formed by highly hydrophilic AEROSIL 300. This has led to observing very different rheological behaviors, regardless of the HPAM polymer molecular weight, below and above a critical fumed silica NPs concentration.

1.
Hou
,
C. T.
,
N.
Barnabe
, and
K.
Greaney
, “
Biodegradation of xanthan by salt-tolerant aerobic microorganisms
,”
J. Ind. Microbiol. Biotechnol.
1
(
1
),
31
37
(
1986
).
2.
Katzbauer
,
B.
, “
Properties and applications of xanthan gum
,”
Polym. Degrad. Stab.
59
(
1–3
),
81
84
(
1998
).
3.
Taylor
,
K. C.
, and
H. A.
Nasr-El-Din
, “
Water-soluble hydrophobically associating polymers for improved oil recovery: A literature review
,”
J. Pet. Sci. Eng.
19
(
3
),
265
280
(
1998
).
4.
Needham
,
R. B.
, and
P. H.
Doe
, “
Polymer flooding review
,”
J. Pet. Technol.
39
(
12
),
1503
1507
(
1987
).
5.
Wever
,
D.
,
F.
Picchioni
, and
A.
Broekhuis
, “
Polymers for enhanced oil recovery: A paradigm for structure–property relationship in aqueous solution
,”
Prog. Polym. Sci.
36
(
11
),
1558
1628
(
2011
).
6.
Jung
,
J. C.
,
K.
Zhang
,
B. H.
Chon
, and
H. J.
Choi
, “
Rheology and polymer flooding characteristics of partially hydrolyzed polyacrylamide for enhanced heavy oil recovery
,”
J. Appl. Polym. Sci.
127
(
6
),
4833
4839
(
2013
).
7.
Ait-Kadi
,
A.
,
P.
Carreau
, and
G.
Chauveteau
, “
Rheological properties of partially hydrolyzed polyacrylamide solutions
,”
J. Rheol.
31
(
7
),
537
561
(
1987
).
8.
Smith
,
F. W.
, “
The behavior of partially hydrolyzed polyacrylamide solutions in porous media
,”
J. Pet. Technol.
22
(
2
),
148
156
(
1970
).
9.
Abidin
,
A.
,
T.
Puspasari
, and
W.
Nugroho
, “
Polymers for enhanced oil recovery technology
,”
Proc. Chem.
4
,
11
16
(
2012
).
10.
Sorbie
,
K. S
.,
Polymer-Improved Oil Recovery
(
Springer Science & Business Media
,
New York
,
2013
).
11.
Sabhapondit
,
A.
,
A.
Borthakur
, and
I.
Haque
, “
Characterization of acrylamide polymers for enhanced oil recovery
,”
J. Appl. Polym. Sci.
87
(
12
),
1869
1878
(
2003
).
12.
Zhuomei
,
L.
, “
Relationship between the structure of the polymers used as water loss control agents for drilling mud and their salt-resistant property (I)
,”
Oilfield Chem.
1
,
005
(
1986
).
13.
Clark
,
R.
,
R.
Scheuerman
,
H.
Rath
, and
H.
Van Laar
, “
Polyacrylamide/potassium-chloride mud for drilling water-sensitive shales
,”
J. Pet. Technol.
28
(
6
),
719
727
(
1976
).
14.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
New York
,
2003
).
15.
Zhang
,
Z.
,
J.
Li
, and
J.
Zhou
, “
Microscopic roles of ‘viscoelasticity’ in HPMA polymer flooding for EOR
,”
Transp Porous Media
86
(
1
),
199
214
(
2011
).
16.
Yin
,
H.
,
D.
Wang
, and
H.
Zhong
, presented at the SPE Annual Technical Conference and Exhibition, San Antonio, TX, 2006.
17.
Smets
,
G.
, and
A.
Hesbain
, “
Hydrolysis of polyacrylamide and acrylic acid–acrylamide copolymers
,”
J. Polym. Sci.
40
(
136
),
217
226
(
1959
).
18.
Ryles
,
R.
, “
Chemical stability limits of water-soluble polymers used in oil recovery processes
,”
SPE Reservoir Eng.
3
(
1
),
23
34
(
1988
).
19.
Taylor
,
K.
, and
H.
Nasr-El-Din
, presented at the SPE International Symposium on Oilfield Chemistry, San Antonio, TX, 1995.
20.
Zaitoun
,
A.
, and
B.
Potie
, presented at the SPE Oilfield and Geothermal Chemistry Symposium, Denver, CO, 1983.
21.
Olajire
,
A. A.
, “
Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges
,”
Energy
77
,
963
982
(
2014
).
22.
Levitt
,
D.
and
G. A.
Pope
, presented at the SPE Symposium on Improved Oil Recovery, Tulsa, OK, 2008.
23.
Yousefvand
,
H.
, and
A.
Jafari
, “
Enhanced oil recovery using polymer/nanosilica
,”
Proc. Mater. Sci.
11
,
565
570
(
2015
).
24.
Maghzi
,
A.
,
R.
Kharrat
,
A.
Mohebbi
, and
M. H.
Ghazanfari
, “
The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery
,”
Fuel
123
,
123
132
(
2014
).
25.
Ehtesabi
,
H.
,
M. M.
Ahadian
, and
V.
Taghikhani
, “
Enhanced heavy oil recovery using TiO2 nanoparticles: Investigation of deposition during transport in core plug
,”
Energy Fuels
29
(
1
),
1
8
(
2014
).
26.
Dullaert
,
K.
, and
J.
Mewis
, “
Thixotropy: Build-up and breakdown curves during flow
,”
J. Rheol.
49
(
6
),
1213
1230
(
2005
).
27.
Walls
,
H.
,
S. B.
Caines
,
A. M.
Sanchez
, and
S. A.
Khan
, “
Yield stress and wall slip phenomena in colloidal silica gels
,”
J. Rheol.
47
(
4
),
847
868
(
2003
).
28.
Zargartalebi
,
M.
,
R.
Kharrat
, and
N.
Barati
, “
Enhancement of surfactant flooding performance by the use of silica nanoparticles
,”
Fuel
143
,
21
27
(
2015
).
29.
Khan
,
S. A.
, and
N. J.
Zoeller
, “
Dynamic rheological behavior of flocculated fumed silica suspensions
,”
J. Rheol.
37
(
6
),
1225
1235
(
1993
).
30.
Raghavan
,
S. R.
,
H.
Walls
, and
S. A.
Khan
, “
Rheology of silica dispersions in organic liquids: New evidence for solvation forces dictated by hydrogen bonding
,”
Langmuir
16
(
21
),
7920
7930
(
2000
).
31.
Yziquel
,
F.
,
P.
Carreau
, and
P.
Tanguy
, “
Non-linear viscoelastic behavior of fumed silica suspensions
,”
Rheol. Acta
38
(
1
),
14
25
(
1999
).
32.
Yziquel
,
F.
,
P.
Carreau
,
M.
Moan
, and
P.
Tanguy
, “
Rheological modeling of concentrated colloidal suspensions
,”
J. Non-Newton. Fluid Mech.
86
(
1
),
133
155
(
1999
).
33.
Jokinen
,
M.
,
E.
Györvary
, and
J. B.
Rosenholm
, “
Viscoelastic characterization of three different sol–gel derived silica gels
,”
Colloids Surf. A Physicochem. Eng. Asp.
141
(
2
),
205
216
(
1998
).
34.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University Press
, Cambridge, England,
2012
).
35.
Russel
,
W.
, “
Review of the role of colloidal forces in the rheology of suspensions
,”
J. Rheol.
24
(
3
),
287
317
(
1980
).
36.
Kamibayashi
,
M.
,
H.
Ogura
, and
Y.
Otsubo
, “
Shear-thickening flow of nanoparticle suspensions flocculated by polymer bridging
,”
J. Colloid Interface Sci.
321
(
2
),
294
301
(
2008
).
37.
Lafuma
,
F.
,
K.
Wong
, and
B.
Cabane
, “
Bridging of colloidal particles through adsorbed polymers
,”
J. Colloid Interface Sci.
143
(
1
),
9
21
(
1991
).
38.
Kamibayashi
,
M.
,
H.
Ogura
, and
Y.
Otsubo
, “
Rheology of complex suspensions flocculated by associating polymers
,”
J. Rheol.
50
(
6
),
1009
1023
(
2006
).
39.
Khandavalli
,
S.
and
J. P.
Rothstein
, “
Extensional rheology of shear-thickening fumed silica nanoparticles dispersed in an aqueous polyethylene oxide solution
,”
J. Rheol.
58
(
2
),
411
431
(
2014
).
40.
Kamibayashi
,
M.
,
H.
Ogura
, and
Y.
Otsubo
, “
Rheological behavior of suspensions of silica nanoparticles in associating polymer solutions
,”
Ind. Eng. Chem. Res.
45
(
21
),
6899
6905
(
2006
).
41.
Kamibayashi
,
M.
,
H.
Ogura
, and
Y.
Otsubo
, “
Viscosity behavior of silica suspensions flocculated by associating polymers
,”
J. Colloid Interface Sci.
290
(
2
),
592
597
(
2005
).
42.
Hu
,
Z.
,
M.
Haruna
,
H.
Gao
,
E.
Nourafkan
, and
D.
Wen
, “
Rheological properties of partially hydrolyzed polyacrylamide seeded by nanoparticles
,”
Ind. Eng. Chem. Res.
56
(
12
),
3456
3463
(
2017
).
43.
Otsubo
,
Y.
, “
Elastic percolation in suspensions flocculated by polymer bridging
,”
Langmuir
6
(
1
),
114
118
(
1990
).
44.
Otsubo
,
Y.
and
K.
Watanabe
, “
Rheological studies on bridging flocculation
,”
Colloids Surf.
50
,
341
352
(
1990
).
45.
Otsubo
,
Y.
, “
Size effects on the shear-thickening behavior of suspensions flocculated by polymer bridging
,”
J. Rheol.
37
(
5
),
799
809
(
1993
).
46.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
(
12
),
1697
1753
(
2011
).
47.
Hyun
,
K.
,
S. H.
Kim
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear as a way to classify the complex fluids
,”
J. Non-Newton. Fluid Mech.
107
(
1
),
51
65
(
2002
).
48.
Sim
,
H. G.
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: A guideline for classification
,”
J. Non-Newton. Fluid Mech.
112
(
2
),
237
250
(
2003
).
49.
Khandavalli
,
S.
, and
J. P.
Rothstein
, “
Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions
,”
Rheol. Acta
54
(
7
),
601
618
(
2015
).
50.
Fardin
,
M. A.
,
C.
Perge
,
L.
Casanellas
,
T.
Hollis
,
N.
Taberlet
,
J.
Ortín
,
S.
Lerouge
, and
S.
Manneville
, “
Flow instabilities in large amplitude oscillatory shear: A cautionary tale
,”
Rheol. Acta
53
(
12
),
885
898
(
2014
).
51.
Magda
,
J. J.
,
C. S.
Lee
,
S. J.
Muller
, and
R. G.
Larson
, “
Rheology, flow instabilities, and shear-induced diffusion in polystyrene solutions
,”
Macromolecules
26
(
7
),
1696
1706
(
1993
).
52.
Tanner
,
R.
, “
Some methods for estimating the normal stress functions in viscometric flows
,”
Trans. Soc. Rheol.
14
(
4
),
483
507
(
1970
).
53.
Giacomin
,
A.
, and
J.
Dealy
, in
Rheological Measurement
(
Springer
, Netherlands,
1998
), pp.
327
356
.
54.
Carter
,
K.
,
Shear banding in polymeric fluids under large amplitude oscillatory shear flow
, Doctoral thesis,
Durham University
,
2016
.
55.
Carmona
,
J.
,
P.
Ramirez
,
N.
Calero
, and
J.
Munoz
, “
Large amplitude oscillatory shear of xanthan gum solutions. Effect of sodium chloride (NaCl) concentration
,”
J. Food Eng.
126
,
165
172
(
2014
).
56.
Kamkar
,
M.
,
E.
Aliabadian
,
A.
Shayesteh Zeraati
, and
U.
Sundararaj
, “
Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites
,”
Phys. Fluids
30
(
2
),
023102
(
2018
).
57.
Szopinski
,
D.
and
G. A.
Luinstra
, “
Viscoelastic properties of aqueous guar gum derivative solutions under large amplitude oscillatory shear (LAOS)
,”
Carbohydr. Polym.
153
,
312
319
(
2016
).
58.
Otsubo
,
Y.
, and
K.
Watanabe
, “
Dynamic viscoelasticity of flocculated suspensions
,”
Colloids Surf.
41
,
303
310
(
1989
).
59.
Sanchez
,
A. M
.,
Colloidal gels of fumed silica: Microstructure, surface interactions and temperature effects
, Ph.D. thesis, North Carolina State University, North Carolina,
2006
.
60.
Mueller
,
R.
,
H. K.
Kammler
,
K.
Wegner
, and
S. E.
Pratsinis
, “
Oh surface density of SiO2 and TiO2 by thermogravimetric analysis
,”
Langmuir
19
(
1
),
160
165
(
2003
).
61.
Kaschta
,
J.
and
R. R.
Schwarzl
, “
Calculation of discrete retardation spectra from creep data—I. Method
,”
Rheol. Acta
33
(
6
),
517
529
(
1994
).
62.
Tuminello
,
W. H.
, “
Molecular weight and molecular weight distribution from dynamic measurements of polymer melts
,”
Polym. Eng. Sci.
26
(
19
),
1339
1347
(
1986
).
63.
Tian
,
J.
,
W.
Yu
, and
C.
Zhou
, “
The preparation and rheology characterization of long chain branching polypropylene
,”
Polymer
47
(
23
),
7962
7969
(
2006
).
64.
Shabbir
,
A.
,
H.
Goldansaz
,
O.
Hassager
,
E.
Van Ruymbeke
, and
N. J.
Alvarez
, “
Effect of hydrogen bonding on linear and nonlinear rheology of entangled polymer melts
,”
Macromolecules
48
(
16
),
5988
5996
(
2015
).
65.
Sadeghi
,
S.
,
M.
Arjmand
,
I.
Otero Navas
,
A.
Zehtab Yazdi
, and
U.
Sundararaj
, “
Effect of nanofiller geometry on network formation in polymeric nanocomposites: Comparison of rheological and electrical properties of multiwalled carbon nanotube and graphene nanoribbon
,”
Macromolecules
50
(
10
),
3954
3967
(
2017
).
66.
Sadeghi
,
S.
,
A.
Zehtab Yazdi
, and
U.
Sundararaj
, “
Controlling short-range interactions by tuning surface chemistry in HDPE/graphene nanoribbon nanocomposites
,”
J. Phys. Chem. B
119
(
35
),
11867
11878
(
2015
).
67.
Krishnamoorti
,
R.
, and
E. P.
Giannelis
, “
Rheology of end-tethered polymer layered silicate nanocomposites
,”
Macromolecules
30
(
14
),
4097
4102
(
1997
).
68.
Cassagnau
,
P.
, “
Melt rheology of organoclay and fumed silica nanocomposites
,”
Polymer
49
(
9
),
2183
2196
(
2008
).
69.
Caputo
,
M.-R.
,
J.
Selb
, and
F.
Candau
, “
Effect of temperature on the viscoelastic behaviour of entangled solutions of multisticker associating polyacrylamides
,”
Polymer
45
(
1
),
231
240
(
2004
).
70.
Goudoulas
,
T. B.
,
S.
Pan
, and
N.
Germann
, “
Nonlinearities and shear banding instability of polyacrylamide solutions under large amplitude oscillatory shear
,”
J. Rheol.
61
(
5
),
1061
1083
(
2017
).
71.
Dobrynin
,
A. V.
,
R. H.
Colby
, and
M.
Rubinstein
, “
Scaling theory of polyelectrolyte solutions
,”
Macromolecules
28
(
6
),
1859
1871
(
1995
).
72.
Karatrantos
,
A.
,
R. J.
Composto
,
K. I.
Winey
, and
N.
Clarke
, “
Polymer and spherical nanoparticle diffusion in nanocomposites
,”
J. Chem. Phys.
146
(
20
),
203331
(
2017
).
73.
Grassi
,
M.
,
R.
Lapasin
, and
S.
Pricl
, “
A study of the rheological behavior of scleroglucan weak gel systems
,”
Carbohydr. Polym.
29
(
2
),
169
181
(
1996
).
74.
Shah
,
S.
,
Y.-L.
Chen
,
K.
Schweizer
, and
C.
Zukoski
, “
Viscoelasticity and rheology of depletion flocculated gels and fluids
,”
J. Chem. Phys.
119
(
16
),
8747
8760
(
2003
).
75.
Wu
,
H.
, and
M.
Morbidelli
, “
A model relating structure of colloidal gels to their elastic properties
,”
Langmuir
17
(
4
),
1030
1036
(
2001
).
76.
Mours
,
M.
, and
H. H.
Winter
, “
Relaxation patterns of nearly critical gels
,”
Macromolecules
29
(
22
),
7221
7229
(
1996
).
77.
Otsubo
,
Y.
, “
Effect of surfactant adsorption on the polymer bridging and rheological properties of suspensions
,”
Langmuir
10
(
4
),
1018
1022
(
1994
).
78.
Otsubo
,
Y.
, “
Rheology control of suspensions by soluble polymers
,”
Langmuir
11
(
6
),
1893
1898
(
1995
).
79.
Horigome
,
M.
, and
Y.
Otsubo
, “
Long-time relaxation of suspensions flocculated by associating polymers
,”
Langmuir
18
(
6
),
1968
1973
(
2002
).
80.
Griot
,
O.
and
J.
Kitchener
, “
Role of surface silanol groups in the flocculation of silica suspensions by polyacrylamide. Part 2. Surface changes of silica suspensions on ageing
,”
Trans. Faraday Soc.
61
,
1032
1038
(
1965
).
81.
Chen
,
S.
,
G.
Øye
, and
J.
Sjöblom
, “
Effect of pH and salt on rheological properties of aerosil suspensions
,”
J. Dispersion Sci. Technol.
28
(
6
),
845
853
(
2007
).
82.
Amiri
,
A.
,
G.
Øye
, and
J.
Sjöblom
, “
Influence of pH, high salinity and particle concentration on stability and rheological properties of aqueous suspensions of fumed silica
,”
Colloids Surf. A Physicochem. Eng. Asp.
349
(
1–3
),
43
54
(
2009
).
83.
Mondragon
,
R.
,
J. E.
Julia
,
A.
Barba
, and
J. C.
Jarque
, “
Characterization of silica–water nanofluids dispersed with an ultrasound probe: A study of their physical properties and stability
,”
Powder Technol.
224
,
138
146
(
2012
).
84.
Deng
,
Y.
,
J. B.
Dixon
, and
G. N.
White
, “
Adsorption of polyacrylamide on smectite, illite, and kaolinite
,”
Soil Sci. Soc. Am. J.
70
(
1
),
297
304
(
2006
).
85.
Kar
,
G.
,
S.
Chander
, and
T.
Mika
, “
The potential energy of interaction between dissimilar electrical double layers
,”
J. Colloid Interface Sci.
44
(
2
),
347
355
(
1973
).
86.
Sedeva
,
I. G.
,
D.
Fornasiero
,
J.
Ralston
, and
D. A.
Beattie
, “
The influence of surface hydrophobicity on polyacrylamide adsorption
,”
Langmuir
25
(
8
),
4514
4521
(
2009
).
87.
Liu
,
G.
,
L.
Yan
,
X.
Chen
, and
G.
Zhang
, “
Study of the kinetics of mushroom-to-brush transition of charged polymer chains
,”
Polymer
47
(
9
),
3157
3163
(
2006
).
88.
Alagha
,
L.
,
S.
Wang
,
L.
Yan
,
Z.
Xu
, and
J.
Masliyah
, “
Probing adsorption of polyacrylamide-based polymers on anisotropic basal planes of kaolinite using quartz crystal microbalance
,”
Langmuir
29
(
12
),
3989
3998
(
2013
).
89.
Oh
,
M.-H.
,
J.-H.
So
, and
S.-M.
Yang
, “
Rheological evidence for the silica-mediated gelation of xanthan gum
,”
J. Colloid Interface Sci.
216
(
2
),
320
328
(
1999
).
90.
Zamani
,
N.
,
I.
Bondino
,
R.
Kaufmann
, and
A.
Skauge
, “
Computation of polymer in-situ rheology using direct numerical simulation
,”
J. Pet. Sci. Eng.
159
,
92
102
(
2017
).
91.
Sandengen
,
K.
,
K.
Melhuus
, and
A.
Kristoffersen
, “
Polymer ‘viscoelastic effect’; does it reduce residual oil saturation
,”
J. Pet. Sci. Eng.
153
,
355
363
(
2017
).
92.
Deshpande
,
A. P.
, in
Rheology of Complex Fluids
(
Springer
, Verlag, New York,
2010
), pp.
87
110
.
93.
Ewoldt
,
R. H.
,
A.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
(
6
),
1427
1458
(
2008
).
94.
Giacomin
,
A. J.
, and
J. M.
Dealy
, in
Techniques in Rheological Measurement
(
Springer
, Dordrecht,
1993
), pp.
99
121
.
95.
Wilhelm
,
M.
, “
Fourier-transform rheology
,”
Macromol. Mater. Eng.
287
(
2
),
83
105
(
2002
).
96.
Wilhelm
,
M.
,
D.
Maring
, and
H.-W.
Spiess
, “
Fourier-transform rheology
,”
Rheol. Acta
37
(
4
),
399
405
(
1998
).
97.
Cho
,
K. S.
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
A geometrical interpretation of large amplitude oscillatory shear response
,”
J. Rheol.
49
(
3
),
747
758
(
2005
).
98.
Yu
,
W.
,
P.
Wang
, and
C.
Zhou
, “
General stress decomposition in nonlinear oscillatory shear flow
,”
J. Rheol.
53
(
1
),
215
238
(
2009
).
99.
Klein
,
C. O.
,
H. W.
Spiess
,
A.
Calin
,
C.
Balan
, and
M.
Wilhelm
, “
Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response
,”
Macromolecules
40
(
12
),
4250
4259
(
2007
).
100.
Bharadwaj
,
N. A.
,
K. S.
Schweizer
, and
R. H.
Ewoldt
, “
A strain stiffening theory for transient polymer networks under asymptotically nonlinear oscillatory shear
,”
J. Rheol.
61
(
4
),
643
665
(
2017
).
101.
Mermet-Guyennet
,
M.
,
J.
Gianfelice de Castro
,
M.
Habibi
,
N.
Martzel
,
M.
Denn
, and
D.
Bonn
, “Laos: The strain softening/strain hardening paradox,”
J. Rheol.
59
(
1
),
21
32
(
2015
).
102.
Renou
,
F.
,
J.
Stellbrink
, and
G.
Petekidis
, “
Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS)
,”
J. Rheol.
54
(
6
),
1219
1242
(
2010
).
103.
Kawaguchi
,
M.
,
T.
Yamamoto
, and
T.
Kato
, “
Rheological studies of hydrophilic and hydrophobic silica suspensions in the presence of adsorbed poly (N-isopropylacrylamide)
,”
Langmuir
12
(
26
),
6184
6187
(
1996
).
104.
Yu
,
K.
,
H.
Cao
,
K.
Qian
,
X.
Sha
, and
Y.
Chen
, “
Shear-thickening behavior of modified silica nanoparticles in polyethylene glycol
,”
J. Nanopart. Res.
14
(
3
),
747
(
2012
).
105.
Wagner
,
N. J.
, and
J. F.
Brady
, “
Shear thickening in colloidal dispersions
,”
Phys. Today
62
(
10
),
27
-
32
(
2009
).
106.
Aranguren
,
M. I.
,
E.
Mora
,
J. V.
DeGroot
, Jr.
, and
C. W.
Macosko
, “
Effect of reinforcing fillers on the rheology of polymer melts
,”
J. Rheol.
36
(
6
),
1165
1182
(
1992
).
107.
Robb
,
I.
, and
J.
Smeulders
, “
The rheological properties of weak gels of poly (vinyl alcohol) and sodium borate
,”
Polymer
38
(
9
),
2165
2169
(
1997
).
108.
Hu
,
Y.
,
S.
Wang
, and
A.
Jamieson
, “
Rheological and rheooptical studies of shear-thickening polyacrylamide solutions
,”
Macromolecules
28
(
6
),
1847
1853
(
1995
).
109.
Dupuis
,
D.
,
F.
Lewandowski
,
P.
Steiert
, and
C.
Wolff
, “
Shear thickening and time-dependent phenomena: The case of polyacrylamide solutions
,”
J. Non-Newton. Fluid Mech.
54
,
11
32
(
1994
).
110.
Jeyaseelan
,
R. S.
, and
A. J.
Giacomin
, “
Network theory for polymer solutions in large amplitude oscillatory shear
,”
J. Non-Newton. Fluid Mech.
148
(
1–3
),
24
32
(
2008
).
111.
Bansal
,
A.
,
H.
Yang
,
C.
Li
,
K.
Cho
,
B. C.
Benicewicz
,
S. K.
Kumar
, and
L. S.
Schadler
, “
Quantitative equivalence between polymer nanocomposites and thin polymer films
,”
Nat. Mater.
4
(
9
),
693
(
2005
).
112.
Oh
,
H.
, and
P. F.
Green
, “
Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures
,”
Nat. Mater.
8
(
2
),
139
(
2009
).
113.
Kabanemi
,
K. K.
, and
J.-F.
Hétu
, “
A reptation-based model to the dynamics and rheology of linear entangled polymers reinforced with nanoscale rigid particles
,”
J. Non-Newton. Fluid Mech.
165
(
15
),
866
878
(
2010
).
114.
Sprakel
,
J.
,
S. B.
Lindström
,
T. E.
Kodger
, and
D. A.
Weitz
, “
Stress enhancement in the delayed yielding of colloidal gels
,”
Phys. Rev. Lett.
106
(
24
),
248303
(
2011
).
115.
Song
,
Y.
, and
Q.
Zheng
, “
Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics
,”
Prog. Mater. Sci.
84
,
1
58
(
2016
).
116.
Chae
,
D. W.
, and
B. C.
Kim
, “
Effects of interface affinity on the rheological properties of zinc oxide nanoparticle-suspended polymer solutions
,”
Macromol. Res.
18
(
8
),
772
776
(
2010
).
117.
Heinrich
,
G.
, and
M.
Klüppel
, “
Recent advances in the theory of filler networking in elastomers
,”
Adv. Polym. Sci.
160
,
1
44
(
2002
).
118.
Cai
,
L.-H.
,
S.
Panyukov
, and
M.
Rubinstein
, “
Hopping diffusion of nanoparticles in polymer matrices
,”
Macromolecules
48
(
3
),
847
862
(
2015
).
119.
Lin
,
C.-C.
,
E.
Parrish
, and
R. J.
Composto
, “
Macromolecule and particle dynamics in confined media
,”
Macromolecules
49
(
16
),
5755
5772
(
2016
).
120.
Poling-Skutvik
,
R.
,
R.
Krishnamoorti
, and
J. C.
Conrad
, “
Size-dependent dynamics of nanoparticles in unentangled polyelectrolyte solutions
,”
ACS Macro Lett.
4
(
10
),
1169
1173
(
2015
).
121.
Hsiao
,
L. C.
,
R. S.
Newman
,
S. C.
Glotzer
, and
M. J.
Solomon
, “
Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels
,”
Proc. Natl. Acad. Sci.
109
(
40
),
16029
16034
(
2012
).
122.
Liu
,
J.
,
Y.
Wu
,
J.
Shen
,
Y.
Gao
,
L.
Zhang
, and
D.
Cao
, “
Polymer–nanoparticle interfacial behavior revisited: A molecular dynamics study
,”
Phys. Chem. Chem. Phys.
13
(
28
),
13058
13069
(
2011
).
123.
See supplementary material at https://doi.org/10.1122/1.5024384 for the physico-chemical properties of fumed silica NPs, overlap and entanglement concentrations, zero-shear viscosities of HPAM polymer solutions as a function of concentration, cluster size of HPAM/AEROSIL 300 and HPAM/AEROSIL R816, dynamic frequency sweep results plotted versus the Deborah number of hybrid solutions, mixing rule, hybrid solution of HPAM 3630 and AEROSIL 200, intercycle and intra-cycle nonlinearities, and a schematic of Lissajous–Bowditch loops and graphical representation of intra-cycle nonlinearities.

Supplementary Material

You do not currently have access to this content.