Supramolecular polymers are important within a wide range of applications including printing, adhesives, coatings, cosmetics, surgery, and nano-fabrication. The possibility to tune polymer properties through the control of supramolecular associations makes these materials both versatile and powerful. Here, we present a systematic investigation of the linear shear rheology for a series of unentangled ethylhexyl acrylate-based polymers for which the concentration of randomly distributed supramolecular side groups is systematically varied. We perform a detailed investigation of the applicability of time temperature superposition (TTS) for our polymers; small amplitude oscillatory shear rheology is combined with stress relaxation experiments to identify the dynamic range over which TTS is a reasonable approximation. Moreover, we find that the “sticky-Rouse” model normally used to interpret the rheological response of supramolecular polymers fits our experimental data well in the terminal regime, but is less successful in the rubbery plateau regime. We propose some modifications to the “sticky-Rouse” model, which includes more realistic assumptions with regard to (i) the random placement of the stickers along the backbone, (ii) the contributions from dangling chain ends, and (iii) the chain motion upon dissociation of a sticker and reassociation with a new co-ordination which involves a finite sized “hop” of the chain. Our model provides an improved description of the plateau region. Finally, we measure the extensional rheological response of one of our supramolecular polymers. For the probed extensional flow rates, which are small compared to the characteristic rates of sticker dynamics, we expect a Rouse-type description to work well. We test this by modeling the observed strain hardening using the upper convected Maxwell model and demonstrate that this simple model can describe the data well, confirming the prediction and supporting our determination of sticker dynamics based on linear shear rheology.

1.
Cui
,
J.
,
D.
Wang
,
K.
Koynov
, and
A.
del Campo
, “
2-Ureido-4-pyrimidone-based hydrogels with multiple responses
,”
ChemPhysChem
14
,
2932
2938
(
2013
).
2.
Appel
,
W. P. J.
,
G.
Portale
,
E.
Wisse
,
P. Y. W.
Dankers
, and
E. W.
Meijer
, “
Aggregation of ureido-pyrimidinone supramolecular thermoplastic elastomers into nanofibers: A kinetic analysis
,”
Macromolecules
44
,
6776
6784
(
2011
).
3.
Yamauchi
,
K.
,
J. R.
Lizotte
,
D. M.
Hercules
,
M. J.
Vergne
, and
T. E.
Long
, “
Combinations of microphase separation and terminal multiple hydrogen bonding in novel macromolecules
,”
J. Am. Chem. Soc.
124
,
8599
8604
(
2002
).
4.
Kautz
,
H.
,
D. J. M.
van Beek
,
R. P.
Sijbesma
, and
E. W.
Meijer
, “
Cooperative end-to-end and lateral hydrogen-bonding motifs in supramolecular thermoplastic elastomers
,”
Macromolecules
39
,
4265
4267
(
2006
).
5.
Pellizzaro
,
M. L.
,
S. A.
Barrett
,
J.
Fisher
, and
A. J.
Wilson
, “
Design, synthesis and binding studies of a novel quadruple ADDA hydrogen-bond array
,”
Org. Biomol. Chem.
10
,
4899
4906
(
2012
).
6.
Lou
,
N.
,
Y.
Wang
,
X.
Li
,
H.
Li
,
P.
Wang
,
C.
Wesdemiotis
,
A. P.
Sokolov
, and
H.
Xiong
, “
Dielectric relaxation and rheological behavior of supramolecular polymeric liquid
,”
Macromolecules
46
,
3160
3166
(
2013
).
7.
Chen
,
S.
, and
W. H.
Binder
, “
Dynamic ordering and phase segregation in hydrogen-bonded polymers
,”
Acc. Chem. Res.
49
,
1409
1420
(
2016
).
8.
Hirschberg
,
J. K.
,
L.
Brunsveld
,
A.
Ramzi
,
J. A.
Vekemans
,
R. P.
Sijbesma
, and
E.
Meijer
, “
Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs
,”
Nature
407
,
167
170
(
2000
).
9.
Brunsveld
,
L.
,
J.
Vekemans
,
J.
Hirschberg
,
R.
Sijbesma
, and
E.
Meijer
, “
Hierarchical formation of helical supramolecular polymers via stacking of hydrogen-bonded pairs in water
,”
Proc. Natl. Acad. Sci.
99
,
4977
4982
(
2002
).
10.
Zhu
,
B.
,
N.
Jasinski
,
A.
Benitez
,
M.
Noack
,
D.
Park
,
A. S.
Goldmann
,
C.
Barner-Kowollik
, and
A.
Walther
, “
Hierarchical nacre mimetics with synergistic mechanical properties by control of molecular interactions in self-healing polymers
,”
Angew. Chem. Int. Ed.
54
,
8653
8657
(
2015
).
11.
Chirila
,
T. V.
,
H. H.
Lee
,
M.
Oddon
,
M. M.
Nieuwenhuizen
,
I.
Blakey
, and
T. M.
Nicholson
, “
Hydrogen-bonded supramolecular polymers as self-healing hydrogels: Effect of a bulky adamantyl substituent in the ureido-pyrimidinone monomer
,”
J. Appl. Polym. Sci.
131
,
39932
(
2014
).
12.
Mather
,
B. D.
,
C. L.
Elkins
,
F. L.
Beyer
, and
T. E.
Long
, “
Morphological analysis of telechelic ureidopyrimidone functional hydrogen bonding linear and star-shaped poly(ethylene-co-propylene)s
,”
Macromol. Rapid Commun.
28
,
1601
1606
(
2007
).
13.
Wilson
,
A. J.
, “
Non-covalent polymer assembly using arrays of hydrogen-bonds
,”
Soft Matter
3
,
409
425
(
2007
).
14.
Feldman
,
K. E.
,
M. J.
Kade
,
T. F. A.
de Greef
,
E. W.
Meijer
,
E. J.
Kramer
, and
C. J.
Hawker
, “
Polymers with multiple hydrogen-bonded end groups and their blends
,”
Macromolecules
41
,
4694
4700
(
2008
).
15.
Gooch
,
A.
,
N. S.
Murphy
,
N. H.
Thomson
, and
A. J.
Wilson
, “
Side-chain supramolecular polymers employing conformer independent triple hydrogen bonding arrays
,”
Macromolecules
46
,
9634
9641
(
2013
).
16.
Beijer
,
F. H.
,
R. P.
Sijbesma
,
H.
Kooijman
,
A. L.
Spek
, and
E. W.
Meijer
, “
Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding
,”
J. Am. Chem. Soc.
120
,
6761
6769
(
1998
).
17.
Brzezski
,
M.
, and
T.
Biela
, “
Supramolecular polylactides by the cooperative interaction of the end groups and stereocomplexation
,”
Macromolecules
48
,
2994
3004
(
2015
).
18.
Folmer
,
B. J. B.
,
R. P.
Sijbesma
,
R. M.
Versteegen
,
J. A. J.
van der Rijt
, and
E. W.
Meijer
, “
Supramolecular polymer materials: Chain extension of telechelic polymers using a reactive hydrogen-bonding synthon
,”
Adv. Mater.
12
,
874
878
(
2000
).
19.
Heinzmann
,
C.
,
I.
Lamparth
,
K.
Rist
,
N.
Moszner
,
G. L.
Fiore
, and
C.
Weder
, “
Supramolecular polymer networks made by solvent-free copolymerization of a liquid 2-ureido-4[1H]-pyrimidinone methacrylamide
,”
Macromolecules
48
,
8128
8136
(
2015
).
20.
Elkins
,
C. L.
,
T.
Park
,
M. G.
McKee
, and
T. E.
Long
, “
Synthesis and characterization of poly(2-ethylhexyl methacrylate) copolymers containing pendant, self-complementary multiple-hydrogen-bonding sites
,”
J. Polym. Sci. Part A: Polym. Chem.
43
,
4618
4631
(
2005
).
21.
Bobade
,
S.
,
Y.
Wang
,
J.
Mays
, and
D.
Baskaran
, “
Synthesis and characterization of ureidopyrimidone telechelics by CuAAC “Click” reaction: Effect of Tg and polarity
,”
Macromolecules
47
,
5040
5050
(
2014
).
22.
Chino
,
K.
, and
M.
Ashiura
, “
Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks
,”
Macromolecules
34
,
9201
9204
(
2001
).
23.
Guo
,
M.
,
L. M.
Pitet
,
H. M.
Wyss
,
M.
Vos
,
P. Y. W.
Dankers
, and
E. W.
Meijer
, “
Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions
,”
J. Am. Chem. Soc.
136
,
6969
6977
(
2014
).
24.
Ware
,
T.
,
K.
Hearon
,
A.
Lonnecker
,
K. L.
Wooley
,
D. J.
Maitland
, and
W.
Voit
, “
Triple-shape memory polymers based on self-complementary hydrogen bonding
,”
Macromolecules
45
,
1062
1069
(
2012
).
25.
Gooch
,
A.
,
C.
Nedolisa
,
K. A.
Houton
,
C. I.
Lindsay
,
A.
Saiani
, and
A. J.
Wilson
, “
Tunable self-assembled elastomers using triply hydrogen-bonded arrays
,”
Macromolecules
45
,
4723
4729
(
2012
).
26.
Hofmeier
,
H.
, and
U. S.
Schubert
, “
Recent developments in the supramolecular chemistry of terpyridine-metal complexes
,”
Chem. Soc. Rev.
33
,
373
99
(
2004
).
27.
Andres
,
P. R.
,
H.
Hofmeier
, and
U. S.
Schubert
, “Complexation parameters of terpyridine-metal complexes,” in
Metal-Containing and Metallosupramolecular Polymers and Materials
, edited by U. S. Schubert, G. R. Newkome, and I. Manners (
ACS
,
Washington, DC
,
2006
), Chap. 11, pp.
141
156
.
28.
Hoogenboom
,
R.
,
J.
Huskens
, and
U. S.
Schubert
, “Grid forming metal coordinating macroligands: Synthesis and complexation,” in
Metal-Containing and Metallosupramolecular Polymers and Materials
, edited by U. S. Schubert, G. R. Newkome, and I. Manners (
ACS
,
Washington, DC
,
2006
), Vol. 928, pp.
63
71
.
29.
Rowan
,
S. J.
, and
J. B.
Beck
, “
Metal-ligand induced supramolecular polymerization: A route to responsive materials
,”
Faraday Discuss.
128
,
43
53
(
2005
).
30.
Shunmugam
,
R.
,
G. J.
Gabriel
,
K. A.
Aamer
, and
G. N.
Tew
, “
Metal-ligand-containing polymers: Terpyridine as the supramolecular unit
,”
Macromol. Rapid Commun.
31
,
784
93
(
2010
).
31.
Han
,
F. S.
,
M.
Higuchi
, and
D. G.
Kurth
, “
Metallo-supramolecular polymers based on functionalized bis-terpyridines as novel electrochromic materials
,”
Adv. Mater.
19
,
3928
3931
(
2007
).
32.
Beck
,
J. B.
, and
S. J.
Rowan
, “The preparation of metallosupramolecular polymers and gels by utilizing 2,6- bis -(1-methyl-benzimidazolyl)pyridine metal ion interactions,” in
Metal-Containing and Metallosupramolecular Polymers and Materials
(
ACS
,
Washington, DC
,
2006
), pp.
97
112
.
33.
Hofmeier
,
H.
,
M.
Wouters
,
D.
Wouters
, and
U. S.
Schubert
, “Thermal stability, rheology, and morphology of metallosupramolecular polymers based on bis-terpyridine-ruthenium(II) complexes,”
Metal-Containing and Metallosupramolecular Polymers and Materials
(
ACS
,
Washington, DC
,
2006
), pp.
113
125
.
34.
Kumpfer
,
J. R.
,
J. J.
Wie
,
J. P.
Swanson
,
F. L.
Beyer
,
M. E.
Mackay
, and
S. J.
Rowan
, “
Influence of metal ion and polymer core on the melt rheology of metallosupramolecular films
,”
Macromolecules
45
,
473
480
(
2012
).
35.
Hofmeier
,
H.
,
R.
Hoogenboom
,
M. E. L.
Wouters
, and
U. S.
Schubert
, “
High molecular weight supramolecular polymers containing both terpyridine metal complexes and ureidopyrimidinone quadruple hydrogen-bonding units in the main chain
,”
J. Am. Chem. Soc.
127
,
2913
2921
(
2005
).
36.
Schubert
,
U. S.
,
O.
Hien
, and
C.
Eschbaumer
, “
Functionalized polymers with metal complexing segments: A simple and high-yield entry towards 2,2:6,2-terpyridine-based oligomers
,”
Macromol. Rapid Commun.
21
,
1156
1161
(
2000
).
37.
Schmatloch
,
S.
, and
U. S.
Schubert
, “
Engineering with metallo-supramolecular polymers: Linear coordination polymers and networks
,”
Macromol. Symp.
199
,
483
498
(
2003
).
38.
Goldansaz
,
H.
,
Q.
Voleppe
,
S.
Pioge
,
C. A.
Fustin
,
J. F.
Gohy
,
J.
Brassinne
,
D.
Auhl
, and
E.
van Ruymbeke
, “
Controlling the melt rheology of linear entangled metallo-supramolecular polymers
,”
Soft Matter
11
,
762
74
(
2015
).
39.
Schwartz
,
G. A.
,
R.
Bergman
,
J.
Mattsson
, and
J.
Swenson
, “
Dielectric relaxation studies of poly(propylene glycol) confined in vermiculite clay
,”
Eur. Phys. J. E
12
,
S113
S116
(
2003
).
40.
Gonzlez
,
L.
,
A.
Ladegaard Skov
, and
S.
Hvilsted
, “
Ionic networks derived from the protonation of dendritic amines with carboxylic acid end-functionalized PEGs
,”
J. Polym. Sci. Part A: Polym. Chem.
51
,
1359
1371
(
2013
).
41.
Chen
,
Q.
,
G. J.
Tudryn
, and
R. H.
Colby
, “
Ionomer dynamics and the sticky Rouse model
,”
J. Rheol.
57
,
1441
1462
(
2013
).
42.
Ling
,
G. H.
,
Y.
Wang
, and
R. A.
Weiss
, “
Linear viscoelastic and uniaxial extensional rheology of alkali metal neutralized sulfonated oligostyrene ionomer melts
,”
Macromolecules
45
,
481
490
(
2012
).
43.
Stadler
,
F. J.
,
W.
Pyckhout-Hintzen
,
J.-M.
Schumers
,
C.-A.
Fustin
,
J.-F.
Gohy
, and
C.
Bailly
, “
Linear viscoelastic rheology of moderately entangled telechelic polybutadiene temporary networks
,”
Macromolecules
42
,
6181
6192
(
2009
).
44.
Chen
,
Q.
,
H.
Masser
,
H.-S.
Shiau
,
S.
Liang
,
J.
Runt
,
P. C.
Painter
, and
R. H.
Colby
, “
Linear viscoelasticity and fourier transform infrared spectroscopy of polyether-ester-sulfonate copolymer ionomers
,”
Macromolecules
47
,
3635
3644
(
2014
).
45.
Roland
,
C. M.
,
K. L.
Ngai
,
P. G.
Santangelo
,
X. H.
Qiu
,
M. D.
Ediger
, and
D. J.
Plazek
, “
Temperature dependence of segmental and terminal relaxation in atactic polypropylene melts
,”
Macromolecules
34
,
6159
6160
(
2001
).
46.
Bosman
,
A. W.
,
R. P.
Sijbesma
, and
E. W.
Meijer
, “
Supramolecular polymers at work
,”
Mater. Today
7
,
34
39
(
2004
).
47.
Sijbesma
,
R. P.
,
F. H.
Beijer
,
L.
Brunsveld
,
B. J. B.
Folmer
,
J. H. K.
K. Hirschberg
,
R. F. M.
Lange
,
J. K. L.
Lowe
, and
E. W.
Meijer
, “
Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding
,”
Science
278
,
1601
1604
(
1997
).
48.
de Greef
,
T. F. A.
, and
E. W.
Meijer
, “
Materials science: Supramolecular polymers
,”
Nature
453
,
171
173
(
2008
).
49.
Wei
,
M.
,
M.
Zhan
,
D.
Yu
,
H.
Xie
,
M.
He
,
K.
Yang
, and
Y.
Wang
, “
Novel poly(tetramethylene ether)glycol and poly(ϵ-caprolactone) based dynamic network via quadruple hydrogen bonding with triple-shape effect and self-healing capacity
,”
ACS. Appl. Mater. Interfaces
7
,
2585
2596
(
2015
).
50.
Cui
,
J.
, and
A. d.
Campo
, “
Multivalent H-bonds for self-healing hydrogels
,”
Chem. Commun.
48
,
9302
9304
(
2012
).
51.
Herbst
,
F.
,
D.
Dhler
,
P.
Michael
, and
W. H.
Binder
, “
Self-healing polymers via supramolecular forces
,”
Macromol. Rapid Commun.
34
,
203
220
(
2013
).
52.
Herbst
,
F.
,
S.
Seiffert
, and
W. H.
Binder
, “
Dynamic supramolecular poly(isobutylene)s for self-healing materials
,”
Polym. Chem.
3
,
3084
(
2012
).
53.
Sivakova
,
S.
,
D. A.
Bohnsack
,
M. E.
Mackay
,
P.
Suwanmala
, and
S. J.
Rowan
, “
Utilization of a combination of weak hydrogen-bonding interactions and phase segregation to yield highly thermosensitive supramolecular polymers
,”
J. Am. Chem. Soc.
127
,
18202
18211
(
2005
).
54.
Li
,
S.
,
F.
Huo
,
Q.
Li
,
C.
Gao
,
Y.
Su
, and
W.
Zhang
, “
Synthesis of a doubly thermo-responsive schizophrenic diblock copolymer based on poly[N-(4-vinylbenzyl)-N,N-diethylamine] and its temperature-sensitive flip-flop micellization
,”
Polym. Chem.
5
,
3910
3918
(
2014
).
55.
Jaeger
,
C. W.
, and
C. R.
King
, Phase change ink composition, US Patent No. 6,245,135 (
2001
).
56.
Shimada
,
M.
,
T.
Kawanishi
,
K.
Murakami
,
T.
Aruga
,
H.
Uemura
, and
K.
Nagai
, Aqueous ink composition, US Patent No. 4,711,668 (1987).
57.
Pappas
,
P. S.
,
A.
Monk
,
S.
Saraiya
, and
J.
Huang
, Imageable element and composition comprising thermally reversible polymers, US Patent No. 6,911,296 (
2005
).
58.
Asawa
,
Y.
,
Y.
Ishizuka
,
E.
Hayakawa
, and
S. P.
Pappas
, Two-layer imageable element comprising thermally reversible polymers, US Patent No. 6,902,860 (
2005
).
59.
Mougin
,
N.
,
A.
Livoreil
, and
J.
Mondet
, Cosmetic composition forming after application a supramolecular polymer, US Patent No. 8,354,097 (
2013
).
60.
Frechet
,
J. M.
,
D.
Hajduk
,
E.
Khoshdel
,
M.
Liu
,
R. B.
Nielsen
,
E. S.
Reid
, and
K. L.
Rutherford
, Cosmetic and personal care compositions, US Patent 6,663,855 (
2003
).
61.
Eling
,
B.
, and
C.
Lindsay
, Supramolecular polymer forming polymer, US Patent App. No. 10/444,612 (
2003
).
62.
Jansen
,
J.
,
J.
Loontjes
, and
B.
Plum
, Supramolecular compound, EP Patent App. No. EP20,000,200,583 (2000).
63.
Lewis
,
C. L.
, and
M.
Anthamatten
, “
Synthesis, swelling behavior, and viscoelastic properties of functional poly(hydroxyethyl methacrylate) with ureidopyrimidinone side-groups
,”
Soft Matter
9
,
4058
4066
(
2013
).
64.
Lewis
,
C. L.
,
K.
Stewart
, and
M.
Anthamatten
, “
The influence of hydrogen bonding side-groups on viscoelastic behavior of linear and network polymers
,”
Macromolecules
47
,
729
740
(
2014
).
65.
Shabbir
,
A.
,
I.
Javakhishvili
,
S.
Cerveny
,
S.
Hvilsted
,
A. L.
Skov
,
O.
Hassager
, and
N. J.
Alvarez
, “
Linear viscoelastic and dielectric relaxation response of unentangled UPy-based supramolecular networks
,”
Macromolecules
49
,
3899
3910
(
2016
).
66.
Feldman
,
K. E.
,
M. J.
Kade
,
E. W.
Meijer
,
C. J.
Hawker
, and
E. J.
Kramer
, “
Model transient networks from strongly hydrogen-bonded polymers
,”
Macromolecules
42
,
9072
9081
(
2009
).
67.
Gold
,
B.
,
C.
Hvelmann
,
N.
Luhmann
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
, and
D.
Richter
, “
The microscopic origin of the rheology in supramolecular entangled polymer networks
,”
J. Rheol.
61
,
1211
1226
(
2017
).
68.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
(
John Wiley & Sons
,
1980
).
69.
Shinozuka
,
M.
, “
Thermorheologically simple viscoelastic materials
,”
AIAA J.
3
,
375
377
(
1965
).
70.
Stadler
,
F. J.
,
W.
Pyckhout-Hintzen
,
J.-M.
Schumers
,
C.-A.
Fustin
,
J.-F.
Gohy
, and
C.
Bailly
, “
Linear viscoelastic rheology of moderately entangled telechelic polybutadiene temporary networks
,”
Macromolecules
42
,
6181
6192
(
2009
).
71.
Plazek
,
D. J.
, “
Temperature dependence of the viscoelastic behavior of polystyrene
,”
J. Phys. Chem.
69
,
3480
3487
(
1965
).
72.
Plazek
,
D. J.
, “
The temperature dependence of the viscoelastic behavior of poly(vinyl acetate)
,”
Polym. J.
12
,
43
53
(
1980
).
73.
Ding
,
Y.
, and
A. P.
Sokolov
, “
Breakdown of time-temperature superposition principle and universality of chain dynamics in polymers
,”
Macromolecules
39
,
3322
3326
(
2006
).
74.
Plazek
,
D. J.
,
I. C.
Chay
,
K. L.
Ngai
, and
C. M.
Roland
, “
Viscoelastic properties of polymers. 4. Thermorheological complexity of the softening dispersion in polyisobutylene
,”
Macromolecules
28
,
6432
6436
(
1995
).
75.
Seiffert
,
S.
, “
Effect of supramolecular interchain sticking on the low-frequency relaxation of transient polymer networks
,”
Macromol. Rapid Commun.
37
,
257
264
(
2016
).
76.
Shivokhin
,
M. E.
,
T.
Narita
,
L.
Talini
,
A.
Habicht
,
S.
Seiffert
,
T.
Indei
, and
J. D.
Schieber
, “
Interplay of entanglement and association effects on the dynamics of semidilute solutions of multisticker polymer chains
,”
J. Rheol.
61
,
1231
1241
(
2017
).
77.
Uneyama
T.
,
S.
Suzuki
, and
H.
Watanabe
, “
Concentration dependence of rheological properties of telechelic associative polymer solutions
,”
Phys. Rev. E
86
,
031802
(
2012
).
78.
Annable
,
T.
,
R.
Buscall
,
R.
Ettelaie
, and
D.
Whittlestone
, “
The rheology of solutions of associating polymers: Comparison of experimental behavior with transient network theory
,”
J. Rheol.
37
,
695
726
(
1993
).
79.
Green
,
M. S.
, and
A. V.
Tobolsky
, “
A new approach to the theory of relaxing polymeric media
,”
J. Chem. Phys.
14
,
80
92
(
1946
).
80.
Leibler
,
L.
,
M.
Rubinstein
, and
R. H.
Colby
, “
Dynamics of reversible networks
,”
Macromolecules
24
,
4701
4707
(
1991
).
81.
Baxandall
,
L. G.
, “
Dynamics of reversibly crosslinked chains
,”
Macromolecules
22
,
1982
1988
(
1989
).
82.
Rubinstein
,
M.
, and
A. N.
Semenov
, “
Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics
,”
Macromolecules
31
,
1386
1397
(
1998
).
83.
Ahmadi
,
M.
,
L. G.
Hawke
,
H.
Goldansaz
, and
E.
van Ruymbeke
, “
Dynamics of entangled linear supramolecular chains with sticky side groups: Influence of hindered fluctuations
,”
Macromolecules
48
,
7300
7310
(
2015
).
84.
Rubinstein
,
M.
, and
A. N.
Semenov
, “
Dynamics of entangled solutions of associating polymers
,”
Macromolecules
34
,
1058
1068
(
2001
).
85.
van Ruymbeke
,
E.
,
K.
Orfanou
,
M.
Kapnistos
,
H.
Iatrou
,
M.
Pitsikalis
,
N.
Hadjichristidis
,
D.
Lohse
, and
D.
Vlassopoulos
, “
Entangled dendritic polymers and beyond: Rheology of symmetric Cayley-tree polymers and macromolecular self-assemblies
,”
Macromolecules
40
,
5941
5952
(
2007
).
86.
van Ruymbeke
,
E.
,
D.
Vlassopoulos
,
M.
Mierzwa
,
T.
Pakula
,
D.
Charalabidis
,
M.
Pitsikalis
, and
N.
Hadjichristidis
, “
Rheology and structure of entangled telechelic linear and star polyisoprene melts
,”
Macromolecules
43
,
4401
4411
(
2010
).
87.
Boudara
,
V. A.
, and
D. J.
Read
, “
Stochastic and preaveraged nonlinear rheology models for entangled telechelic star polymers
,”
J. Rheol.
61
,
339
362
(
2017
).
88.
Tang
,
S.
,
M.
Wang
, and
B. D.
Olsen
, “
Anomalous self-diffusion and sticky Rouse dynamics in associative protein hydrogels
,”
J. Am. Chem. Soc.
137
,
3946
3957
(
2015
).
89.
Stadler
,
F. J.
,
T.
Still
,
G.
Fytas
, and
C.
Bailly
, “
Elongational rheology and Brillouin light scattering of entangled telechelic polybutadiene based temporary networks
,”
Macromolecules
43
,
7771
7778
(
2010
).
90.
Ling
,
G. H.
,
Y.
Wang
, and
R.
Weiss
, “
Linear viscoelastic and uniaxial extensional rheology of alkali metal neutralized sulfonated oligostyrene ionomer melts
,”
Macromolecules
45
,
481
490
(
2011
).
91.
Shabbir
,
A.
,
H.
Goldansaz
,
O.
Hassager
,
E.
van Ruymbeke
, and
N. J.
Alvarez
, “
Effect of hydrogen bonding on linear and nonlinear rheology of entangled polymer melts
,”
Macromolecules
48
,
5988
5996
(
2015
).
92.
Tudryn
,
G. J.
,
M. V.
O’Reilly
,
S.
Dou
,
D. R.
King
,
K. I.
Winey
,
J.
Runt
, and
R. H.
Colby
, “
Molecular mobility and cation conduction in polyether-ester-sulfonate copolymer ionomers
,”
Macromolecules
45
,
3962
3973
(
2012
).
93.
Moad
,
G.
,
E.
Rizzardo
, and
S. H.
Thang
, “
Living radical polymerization by the RAFT process - a second update
,”
Aust. J. Chem.
62
,
1402
1472
(
2009
).
94.
Rizzardo
,
E.
,
M.
Chen
,
B.
Chong
,
G.
Moad
,
M.
Skidmore
, and
S. H.
Thang
, “
RAFT polymerization: Adding to the picture
,”
Macromol. Symp.
248
,
104
116
(
2007
).
95.
Fetters
,
L. J.
,
D. J.
Lohse
, and
R. H.
Colby
,
Chain Dimensions and Entanglement Spacings
(
Springer
,
New York
,
2007
), pp.
447
454
.
96.
Van Gurp
,
M.
, and
J.
Palmen
, “
Time-temperature superposition for polymeric blends
,”
Rheol. Bull.
67
,
5
8
(
1998
).
97.
Trinkle
,
S.
, and
C.
Friedrich
, “
Van Gurp-Palmen-plot: A way to characterize polydispersity of linear polymers
,”
Rheol. Acta.
40
,
322
328
(
2001
).
98.
Tassieri
,
M.
,
M.
Laurati
,
D. J.
Curtis
,
D. W.
Auhl
,
S.
Coppola
,
A.
Scalfati
,
K.
Hawkins
,
P. R.
Williams
, and
J. M.
Cooper
, “
i-Rheo: Measuring the materials linear viscoelastic properties ‘in a step’!
,”
J. Rheol.
60
,
649
660
(
2016
).
99.
Marín
,
J. M. R.
,
J. K.
Huusom
,
N. J.
Alvarez
,
Q.
Huang
,
H. K.
Rasmussen
,
A.
Bach
,
A. L.
Skov
, and
O.
Hassager
, “
A control scheme for filament stretching rheometers with application to polymer melts
,”
J. Nonnewton. Fluid Mech.
194
,
14
22
(
2013
).
100.
Zhang
,
Z.
,
C.
Huang
,
R.
Weiss
, and
Q.
Chen
, “
Association energy in strongly associative polymers
,”
J. Rheol.
61
,
1199
1207
(
2017
).
101.
Flory
,
P. J.
, “
Molecular size distribution in three dimensional polymers. I. Gelation
,”
J. Am. Chem. Soc
63
,
3083
3090
(
1941
).
102.
Likhtman
,
A.
, “
Viscoelasticity and molecular rheology
,” in
Polymer Science: A Comprehensive Reference
, 2nd ed., edited by M. Moeller and K. Matyjaszewski (
Elsevier
,
Amsterdam
,
2012
), Vol. 1, Chap. 1.06, pp.
133
179
.
103.
Ramírez
,
J.
,
S. K.
Sukumaran
,
B.
Vorselaars
, and
A. E.
Likhtman
, “
Efficient on the fly calculation of time correlation functions in computer simulations
,”
J. Chem. Phys.
133
,
154103
(
2010
).
104.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
New York
,
1988
).
105.
Dealy
,
J. M.
,
D. J.
Read
,
R. G.
Larson
,
Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again
(
Carl Hanser Verlag GmbH & Co. KG
,
München
,
2018
).
You do not currently have access to this content.