Controlling the structure and the rheological properties of colloidal suspension is essential in numerous applications to control the phenomenon known as shear-thickening. Here, we report on the nontrivial interplay between hydrodynamic and frictional interactions using mesoscopic characterization of semidense, φ = 0.48, and dense, φ = 0.58, colloidal suspensions. Monitoring computationally both rheology and microstructure of these complex fluids under an external deformation, we show that in the semidense regime the interactions in colloidal suspensions are dominated by hydrodynamics while the fraction of frictional bonds remains negligible and consequently the size of frictional clusters remain small. For these systems, the normal stresses remain negative and large. For dense suspensions, frictional forces are necessary to capture discontinuous shear-thickening (DST); however, the microstructure and rheology are sensitive to the level of roughness of colloidal particles. Furthermore, we show that the frictional bonds in the dense and semidense regime follow the same statistics as random networks introduced by Erdős–Rényi where the presence of frictional bonds in dense suspensions promotes formation of a Giant percolated cluster. We show that for both semidense and dense regimes hydroclusters initially form, within which the frictional contacts nucleate. In the case of dense suspensions these nuclei grow and percolate and form a frictional network. We show that the presence of such a percolated cluster is also necessary for DST to occur.

1.
Wagner
,
N. J.
, and
J. F.
Brady
, “
Shear thickening in colloidal dispersions
,”
Phys. Today
62
(
10
),
27
32
(
2009
).
2.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge U.P.
,
Cambridge
,
2012
).
3.
Cheng
,
Z.
,
P. M.
Chaikin
,
W. B.
Russel
,
W. V.
Meyer
,
J.
Zhu
,
R. B.
Rogers
, and
R. H.
Ottewill
, “
Phase diagram of hard spheres
,”
Mater. Des.
22
(
7
),
529
534
(
2001
).
4.
Phan
,
S.-E.
,
W. B.
Russel
,
Z.
Cheng
,
J.
Zhu
,
P. M.
Chaikin
,
J. H.
Dunsmuir
, and
R. H.
Ottewill
, “
Phase transition, equation of state, and limiting shear viscosities of hard sphere dispersions
,”
Phys. Rev. E
54
(
6
),
6633
6645
(
1996
).
5.
Guazzelli
,
E.
, and
J. F.
Morris
,
A Physical Introduction to Suspension Dynamics
(
Cambridge University Press
,
Cambridge
,
2011
), Vol.
45
6.
d'Haene
,
P.
,
J.
Mewis
, and
G.
Fuller
, “
Scattering dichroism measurements of flow-induced structure of a shear thickening suspension
,”
J. Colloid Interface Sci.
156
(
2
),
350
358
(
1993
).
7.
Bender
,
J. W.
, and
N. J.
Wagner
, “
Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions
,”
J. Colloid Interface Sci.
172
(
1
),
171
184
(
1995
).
8.
Bender
,
J.
, and
N. J.
Wagner
, “
Reversible shear thickening in monodisperse and bidisperse colloidal dispersions
,”
J. Rheol. (1978-present)
40
(
5
),
899
916
(
1996
).
9.
Cheng
,
X.
,
J. H.
McCoy
,
J. N.
Israelachvili
, and
I.
Cohen
, “
Imaging the microscopic structure of shear thinning and thickening colloidal suspensions
,”
Science
333
(
6047
),
1276
1279
(
2011
).
10.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition
,”
J. Chem. Phys.
117
(
22
),
10291
10302
(
2002
).
11.
Gurnon
,
A. K.
, and
N. J.
Wagner
, “
Microstructure and rheology relationships for shear thickening colloidal dispersions
,”
J. Fluid Mech.
769
,
242
276
(
2015
).
12.
Kalman
,
D. P.
, and
N. J.
Wagner
, “
Microstructure of shear-thickening concentrated suspensions determined by flow-USANS
,”
Rheol. Acta
48
(
8
),
897
908
(
2009
).
13.
Lee
,
Y. S.
, and
N. J.
Wagner
, “
Rheological properties and small-angle neutron scattering of a shear thickening, nanoparticle dispersion at high shear rates
,”
Ind. Eng. Chem. Res.
45
(
21
),
7015
7024
(
2006
).
14.
O'Brie
,
V. T.
, and
M. E.
Mackay
, “
Stress components and shear thickening of concentrated hard sphere suspensions
,”
Langmuir
16
(
21
),
7931
7938
(
2000
).
15.
Brady
,
J. F.
, and
G.
Bossis
, “
The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation
,”
J. Fluid Mech.
155
,
105
129
(
1985
).
16.
Brady
,
J. F.
, and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
157
(
1988
).
17.
Phung
,
T. N.
,
J. F.
Brady
, and
G.
Bossis
, “
Stokesian dynamics simulation of Brownian suspensions
,”
J. Fluid Mech.
313
,
181
207
(
1996
).
18.
Foss
,
D. R.
, and
J. F.
Brady
, “
Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation
,”
J. Fluid Mech.
407
,
167
200
(
2000
).
19.
Banchio
,
A. J.
, and
J. F.
Brady
, “
Accelerated stokesian dynamics: Brownian motion
,”
J. Chem. Phys.
118
(
22
),
10323
10332
(
2003
).
20.
Jamali
,
S.
,
M.
Yamanoi
, and
J.
Maia
, “
Bridging the gap between microstructure and macroscopic behavior of monodisperse and bimodal colloidal suspensions
,”
Soft Matter
9
(
5
),
1506
1515
(
2013
).
21.
Jamali
,
S.
,
A.
Boromand
,
N.
Wagner
, and
J.
Maia
, “
Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions
,”
J. Rheol. (1978-present)
59
(
6
),
1377
1395
(
2015
).
22.
Vázquez-Quesada
,
A.
, and
M.
Ellero
, “
Rheology and microstructure of non-colloidal suspensions under shear studied with smoothed particle hydrodynamics
,”
J. Non-Newtonian Fluid Mech.
233
,
37
47
(
2016
).
23.
Brown
,
E.
, and
H. M.
Jaeger
, “
The role of dilation and confining stresses in shear thickening of dense suspensions
,”
J. Rheol. (1978-present)
56
(
4
),
875
923
(
2012
).
24.
Brown
,
E.
, and
H. M.
Jaeger
, “
Shear Thickening in concentrated suspensions: phenomenology, mechanisms, and relations to jamming
,”
Rep. Prog. Phys.
77
(
4
),
046602
(
2014
).
25.
Seto
,
R.
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
(
21
),
218301
(
2013
).
26.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
,”
J. Rheol. (1978-present)
58
(
6
),
1693
1724
(
2014
).
27.
Wyart
,
M.
, and
M.
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
112
(
9
),
098302
(
2014
).
28.
Lin
,
N. Y. C.
,
B. M.
Guy
,
M.
Hermes
,
C.
Ness
,
J.
Sun
,
W. C. K.
Poon
, and
I.
Cohen
, “
Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,”
Phys. Rev. Lett.
115
(
22
),
228304
(
2015
).
29.
Lin
,
N. Y. C.
,
C.
Ness
,
M. E.
Cates
,
J.
Sun
, and
I.
Cohen
, “
Tunable shear thickening in suspensions
,”
Proc. Natl. Acad. Sci.
113
(
39
),
10774
10778
(
2016
).
30.
Guy
,
B.
,
M.
Hermes
, and
W.
Poon
, “
Towards a unified description of the rheology of hard-particle suspensions
,”
Phys. Rev. Lett.
115
(
8
),
088304
(
2015
).
31.
Royer
,
J. R.
,
D. L.
Blair
, and
S. D.
Hudson
, “
Rheological signature of frictional interactions in shear thickening suspensions
,”
Phys. Rev. Lett.
116
(
18
),
188301
(
2016
).
32.
Fernandez
,
N.
,
R.
Mani
,
D.
Rinaldi
,
D.
Kadau
,
M.
Mosquet
,
H.
Lombois-Burger
,
J.
Cayer-Barrioz
,
H. J.
Herrmann
,
N. D.
Spencer
, and
L.
Isa
, “
Microscopic mechanism for shear thickening of non-Brownian suspensions
,”
Phys. Rev. Lett.
111
(
10
),
108301
(
2013
).
33.
Lowe
,
C. P.
, “
An alternative approach to dissipative particle dynamics
,”
EPL
47
(
2
),
145
151
(
1999
).
34.
Denn
,
M. M.
, and
J. F.
Morris
, “
Rheology of non-Brownian suspensions
,”
Annu. Rev. Chem. Biomol. Eng.
5
(
1
),
203
228
(
2014
).
35.
Cwalina
,
C. D.
, and
N. J.
Wagner
, “
Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions
,”
J. Rheol. (1978-present)
58
(
4
),
949
967
(
2014
).
36.
Lee
,
M.
,
M.
Alcoutlabi
,
J.
Magda
,
C.
Dibble
,
M.
Solomon
,
X.
Shi
, and
G.
McKenna
, “
The effect of the shear-thickening transition of model colloidal spheres on the sign of N1 and on the radial pressure profile in torsional shear flows
,”
J. Rheol. (1978-present)
50
(
3
),
293
311
(
2006
).
37.
Laun
,
H.
, “
Normal stresses in extremely shear thickening polymer dispersions
,”
J. Non-Newtonian Fluid Mech.
54
,
87
108
(
1994
).
38.
Fernandez
,
N.
,
J.
Cayer-Barrioz
,
L.
Isa
, and
N. D.
Spencer
, “
Direct, robust technique for the measurement of friction between microspheres
,”
Langmuir
31
(
32
),
8809
8817
(
2015
).
39.
Hsiao
,
L. C.
,
S.
Jamali
,
E.
Glynos
,
P. F.
Green
,
R. G.
Larson
, and
M. J.
Solomon
, “
Rheological state diagrams for rough colloids in shear flow
,”
Phys. Rev. Lett.
119
(
15
),
158001
(
2017
).
40.
Comtet
,
J.
,
G.
Chatté
,
A.
Niguès
,
L.
Bocquet
,
A.
Siria
, and
A.
Colin
, “
Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions
,”
Nat. Commun.
8
,
15633
15640
(
2017
).
41.
Hoogerbrugge
,
P. J.
, and
J. M. V. A.
Koelman
, “
Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics
,”
EPL
19
(
3
),
155
160
(
1992
).
42.
Español
,
P.
, and
P.
Warren
, “
Statistical mechanics of dissipative particle dynamics
,”
EPL
30
(
4
),
191
196
(
1995
).
43.
Boromand
,
A.
,
S.
Jamali
, and
J. M.
Maia
, “
Viscosity measurement techniques in dissipative particle dynamics
,”
Comput. Phys. Commun.
196
,
149
160
(
2015
).
44.
Jamali
,
S.
,
A.
Boromand
,
S.
Khani
, and
J.
Maia
, “
Gaussian-inspired auxiliary non-equilibrium thermostat (GIANT) for dissipative particle dynamics simulations
,”
Comput. Phys. Commun.
197
,
27
34
(
2015
).
45.
Bolintineanu
,
D. S.
,
G. S.
Grest
,
J. B.
Lechman
,
F.
Pierce
,
S. J.
Plimpton
, and
P. R.
Schunk
, “
Particle dynamics modeling methods for colloid suspensions
,”
Comput. Particle Mech.
1
(
3
),
321
356
(
2014
).
46.
Chen
,
S.
,
N.
Phan-Thien
,
B. C.
Khoo
, and
X. J.
Fan
, “
Flow around spheres by dissipative particle dynamics
,”
Phys. Fluids
18
(
10
),
103605
(
2006
).
47.
Pivkin
,
I. V.
, and
G. E.
Karniadakis
, “
Controlling density fluctuations in wall-bounded dissipative particle dynamics systems
,”
Phys. Rev. Lett.
96
(
20
),
206001
(
2006
).
48.
Whittle
,
M.
, and
K. P.
Travis
, “
Dynamic simulations of colloids by core-modified dissipative particle dynamics
,”
J. Chem. Phys.
132
(
12
),
124906
(
2010
).
49.
Boromand
,
A.
,
S.
Jamali
, and
J.
Maia
, “
Structural fingerprints of yielding mechanisms in attractive colloidal gels
,”
Soft Matter
13
(
2
),
458
473
(
2017
).
50.
Ball
,
R. C.
, and
J. R.
Melrose
, “
Lubrication breakdown in hydrodynamic simulations of concentrated colloids
,”
Adv. Colloid Interface Sci.
59
,
19
30
(
1995
).
51.
Irving
,
J. H.
, and
J. G.
Kirkwood
, “
The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics
,”
J. Chem. Phys.
18
(
6
),
817
829
(
1950
).
52.
Lees
,
A.
, and
S.
Edwards
, “
The computer study of transport processes under extreme conditions
,”
J. Phys. C: Solid State Phys.
5
(
15
),
1921
1928
(
1972
).
53.
O'Hern
,
C. S.
,
L. E.
Silbert
,
A. J.
Liu
, and
S. R.
Nagel
, “
Jamming at zero temperature and zero applied stress: The epitome of disorder
,”
Phys. Rev. E
68
(
1
),
011306
(
2003
).
54.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening in Brownian suspensions by dynamic simulation
,”
Proc. Natl. Acad. Sci.
112
(
50
),
15326
15330
(
2015
).
55.
See supplementary material at https://doi.org/10.1122/1.5006937 for the following details. First we show and compare our results with both experimental studies as well as frictional Stokesian Dynamics to show the validity of frictional dissipative particle model. In the second part, we present complementary data on the microstructure of frictional suspensions mainly on the statistics of frictional bonds and their temporal evolution. Finally, we discuss on the computational algorithm we used to identify and measure physical properties of the giant cluster.
56.
Krieger
,
I. M.
, and
M.
Eguiluz
, “
The second electroviscous effect in polymer lattices
,”
Trans. Soc. Rheol. (1957-1977)
20
(
1
),
29
45
(
1976
).
57.
Buscall
,
R.
,
J. W.
Goodwin
,
M. W.
Hawkins
, and
R. H.
Ottewill
, “
Viscoelastic properties of concentrated lattices. Part 1.—Methods of examination
,”
J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases
78
(
1
),
2873
2887
(
1982
).
58.
Horn
,
F.
,
W.
Richtering
,
J.
Bergenholtz
,
N.
Willenbacher
, and
N.
Wagner
, “
Hydrodynamic and colloidal interactions in concentrated charge-stabilized polymer dispersions
,”
J. colloid Interface Sci.
225
(
1
),
166
178
(
2000
).
59.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions
,”
J. Rheol. (1978-present)
45
(
5
),
1205
1222
(
2001
).
60.
Brady
,
J. F.
, and
J. F.
Morris
, “
Microstructure of strongly sheared suspensions and its impact on rheology and diffusion
,”
J. Fluid Mech.
348
,
103
139
(
1997
).
61.
Bergenholtz
,
J.
,
J.
Brady
, and
M.
Vicic
, “
The non-Newtonian rheology of dilute colloidal suspensions
,”
J. Fluid Mech.
456
,
239
275
(
2002
).
62.
Krishnamurthy
,
L.-N.
,
N. J.
Wagner
, and
J.
Mewis
, “
Shear thickening in polymer stabilized colloidal dispersions
,”
J. Rheol.
49
(
6
),
1347
1360
(
2005
).
63.
Silbert
,
L. E.
, “
Jamming of frictional spheres and random loose packing
,”
Soft Matter
6
(
13
),
2918
2924
(
2010
).
64.
Erdös
,
P.
, and
A.
Rényi
,
On Random Graphs, I
(
Publicationes Mathematicae
,
Debrecen
,
1959
), Vol. 6, pp.
290
297
.
65.
Molly
,
M.
, and
B.
Reed
, “
A critical point for random graphs with a given degree sequence
,”
Random Struct. Algorithms
6
(
2‐3
),
161
180
(
1995
).

Supplementary Material

You do not currently have access to this content.