This work concerns extension induced crystallization of a commercial high density polyethylene above the equilibrium melting temperature. We compare the nonlinear response during uniaxial elongation to the morphology obtained in the quenched fibers after cessation of the flow at a Hencky strain of 5. At 12 °C above the melting temperature, the samples undergo brittle fracture. Samples stretched at 2 and 6 °C above the melting temperature remain intact throughout the entire course of deformation and exhibit a strain hardening behavior that does not follow time temperature superposition. We propose that stabilization of the filament at lower temperatures, as well as the failure of time temperature superposition, is caused by flow-induced nucleation and growth of shish structures oriented along the flow direction. Further justification is obtained from small-angle X-ray scattering performed on the quenched filament showing an increased formation of shish with an increase in the deformation rate. We find the critical Hencky strain for the onset of the shish formation to be between 0 and 0.6, which is significantly lower than the values reported in the existing literature. We model the influence of shish nucleation on the rheological response in an extension using the hierarchical multimode stress function, which is modified to include the stretched network assumption.

1.
Flory
,
P. J.
, “
Thermodynamics of crystallization in high polymers. I. Crystallization induced by stretching
,”
J. Chem. Phys.
15
,
397
408
(
1947
).
2.
Janeschitz-Kriegl
,
H.
,
Crystallization Modalities in Polymer Melt Processing: Fundamental Aspects of Structure Formation
(
Springer Vienna
,
Vienna
,
2010
).
3.
Housmans
,
J.-W.
,
R. J. A.
Steenbakkers
,
P. C.
Rooze mond
,
G. W. M.
Peters
, and
H. E. H.
Meijer
, “
Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene
,”
Macromolecules
42
,
5728
5740
(
2009
).
4.
Keller
,
A.
, and
H. W. H.
Kolnaar
, “
Flow-induced orientation and structure formation
,” in
Materials Science and Technology
(
VCH Verlagsgesellschaft mbH
,
Weinheim
,
1997
), Vol.
17
, pp.
187
268
.
5.
Yang
,
L.
,
R. H.
Somani
,
I.
Sics
,
B. S.
Hsiao
,
R.
Kolb
,
H.
Fruitwala
, and
C.
Ong
, “
Shear-induced crystallization precursor studies in model polyethylene blends by in-situ rheo-SAXS and rheo-WAXD
,”
Macromolecules
37
,
4845
4859
(
2004
).
6.
Peters
,
G. W. M.
,
L.
Balzano
, and
R. J. A.
Steenbakkers
,
Handbook of Polymer Crystallization
, 1st ed. (
Wiley
,
New Jersey
,
2013
). pp.
399
432
.
7.
Kumaraswamy
,
G.
,
R. K.
Verma
,
J. A.
Kornfield
,
F.
Yeh
, and
B. S.
Hsiao
, “
Shear-enhanced crystallization in isotactic polypropylene. In-Situ synchrotron SAXS and WAXD
,”
Macromolecules
37
,
9005
9017
(
2004
).
8.
Yan
,
T.
,
B.
Zhao
,
Y.
Cong
,
Y.
Fang
,
S.
Cheng
,
L.
Li
,
G.
Pan
,
Z.
Wang
,
X.
Li
, and
F.
Bian
, “
Critical strain for Shish-Kebab formation
,”
Macromolecules
43
,
602
605
(
2010
).
9.
Cui
,
K.
,
L.
Meng
,
N.
Tian
,
W.
Zhou
,
Y.
Liu
,
Z.
Wang
,
J.
He
, and
L.
Li
, “
Self-acceleration of nucleation and formation of Shish in extension-induced crystallization with strain beyond fracture
,”
Macromolecules
45
,
5477
5486
(
2012
).
10.
Cui
,
K.
,
Z.
Ma
,
Z.
Wang
,
Y.
Ji
,
D.
Liu
,
N.
Huang
,
L.
Chen
,
W.
Zhang
, and
L.
Li
, “
Kinetic process of Shish formation: From stretched network to stabilized nuclei
,”
Macromolecules
48
,
5276
5285
(
2015
).
11.
Wang
,
Z.
,
F.
Su
,
Y.
Ji
,
H.
Yang
,
N.
Tian
,
J.
Chang
,
L.
Meng
, and
L.
Li
, “
Transition from chain- to crystal-network in extension induced crystallization of isotactic polypropylene
,”
J. Rheol.
61
,
589
599
(
2017
).
12.
Schrauwen
,
B. A. G.
,
L. C A V.
Breemen
,
A. B.
Spoelstra
,
L. E.
Govaert
,
G. W. M.
Peters
, and
H. E. H.
Meijer
, “
Structure, deformation, and failure of flow-oriented semicrystalline polymers
,”
Macromolecules
8618
8633
(
2004
).
13.
Fielding
,
S. M.
, “
Criterion for extensional necking instability in polymeric fluids
,”
Phys. Rev. Lett.
107
,
258301
(
2011
).
14.
Hoyle
,
D. M.
, and
S. M.
Fielding
, “
Criteria for extensional necking instability in complex fluids and soft solids. Part I: Imposed Hencky strain rate protocol
,”
J. Rheol.
60
,
1347
1375
(
2016
).
15.
Hoyle
,
D. M.
, and
S. M.
Fielding
, “
Criteria for extensional necking instability in complex fluids and soft solids. Part II: Imposed tensile stress and force protocols
,”
J. Rheol.
60
,
1377
1397
(
2016
).
16.
Huang
,
Q.
,
N. J.
Alvarez
,
A.
Shabbir
, and
O.
Hassager
, “
Multiple cracks propagate simultaneously in polymer liquids in tension
,”
Phys. Rev. Lett.
117
,
087801
(
2016
).
17.
Huang
,
Q.
, and
O.
Hassager
, “
Polymer liquids fracture like solids
,”
Soft Matter
13
,
3470
3474
(
2017
).
18.
Schwarzl
,
F.
, “
The numerical calculation of storage and loss compliance from creep data for linear viscoelastic materials
,”
Rheol. Acta
8
,
6
17
(
1969
).
19.
Wingstrand
,
S. L.
,
B.
Shen
,
J. A.
Kornfield
,
K.
Mortensen
,
D.
Parisi
,
D.
Vlassopoulos
, and
O.
Hassager
, “
Rheological link between polymer melts with a high molecular weight tail and enhanced formation of Shish-Kebabs
,”
ACS Macro Lett.
6
,
1268
1273
(
2017
).
20.
Gabriel
,
C.
,
J.
Kaschta
, and
H.
Münstedt
, “
Influence of molecular structure on rheological properties of polyethylenes
,”
Rheol. Acta
37
,
7
20
(
1998
).
21.
Münstedt
,
H.
, and
F. R.
Schwarzl
,
Deformation and Flow of Polymeric Materials
(
Springer
,
Berlin/Heidelberg
,
2014
), p.
558
.
22.
Román Marín
,
J. M.
,
J. K.
Huusom
,
N. J.
Alvarez
,
Q.
Huang
,
H. K.
Rasmussen
,
A.
Bach
,
A. L.
Skov
, and
O.
Hassager
, “
A control scheme for filament stretching rheometers with application to polymer melts
,”
J. Non-Newtonian Fluid Mech.
194
,
14
22
(
2013
).
23.
Hengeller
,
L.
,
Q.
Huang
,
A.
Dorokhin
,
N. J.
Alvarez
,
K.
Almdal
, and
O.
Hassager
, “
Stress relaxation of bi-disperse polystyrene melts
,”
Rheol. Acta
55
,
303
314
(
2016
).
24.
Wingstrand
,
S. L.
,
M.
van Drongelen
,
K.
Mortensen
,
R. S.
Graham
,
Q.
Huang
, and
O.
Hassager
, “
Influence of extensional stress overshoot on crystallization of LDPE
,”
Macromolecules
50
,
1134
1140
(
2017
).
25.
Wingstrand
,
S. L.
,
L.
Imperiali
,
R.
Stepanyan
, and
O.
Hassager
, “
Extension induced phase separation and crystallization in semidilute solutions of ultra high molecular weight polyethylene
,”
Polymer
136
,
215
223
(
2018
).
26.
Rasmussen
,
H. K.
,
A. G.
Bejenariu
,
O.
Hassager
, and
D.
Auhl
, “
Experimental evaluation of the pure configurational stress assumption in the flow dynamics of entangled polymer melts
,”
J. Rheol.
54
,
1325
1336
(
2010
).
27.
Tabuteau
,
H.
,
S.
Mora
,
M.
Ciccotti
,
C.-Y.
Hui
, and
C.
Ligoure
, “
Propagation of a brittle fracture in a viscoelastic fluid
,”
Soft Matter
7
,
9474
9483
(
2011
).
28.
Freund
,
L. B.
,
Dynamic Fracture Mechanics
(
Cambridge University
,
Cambridge, UK
,
1990
).
29.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Fluid Mechanics
, 2nd ed. (
Wiley
,
New York
,
1987
).
30.
Gennes
,
P. G. D.
, “
Soft Adhesives
,”
Langmuir
12
,
4497
4500
(
1996
).
31.
Coppola
,
S.
,
L.
Balzano
,
E.
Gioffredi
,
P. L.
Maffettone
, and
N.
Grizzuti
, “
Effects of the degree of undercooling on flow induced crystallization in polymer melts
,”
Polymer
45
,
3249
3256
(
2004
).
32.
Balzano
,
L.
,
N.
Kukalyekar
,
S.
Rastogi
,
G. W. M.
Peters
, and
J. C.
Chadwick
, “
Crystallization and dissolution of flow-induced precursors
,”
Phys. Rev. Lett.
100
,
048302
(
2008
).
33.
Derakhshandeh
,
M.
, and
S. G.
Hatzikiriakos
, “
Flow-induced crystallization of high-density polyethylene: The effects of shear and uniaxial extension
,”
Rheol. Acta
51
,
315
327
(
2012
).
34.
Roozemond
,
P. C.
,
Z.
Ma
,
K.
Cui§
,
L.
Li
, and
G. W. M.
Peters
, “
Multimorphological crystallization of shish-kebab structures in isotactic polypropylene: Quantitative modeling of parent–daughter crystallization kinetics
,”
Macromolecules
47
,
5152
5162
(
2014
).
35.
Steenbakkers
,
R. J. A.
,
G. W. M.
Peters
, and
H. E. H.
Meijer
, “
Rheological modeling of flow-induced crystallization in polymer melts and limitations on classification of experiments
,”
AIP Conf. Proc.
1027
,
493
495
(
2008
).
36.
Roozemond
,
P. C.
,
M.
van Drongelen
, and
G. W. M.
Peters
, “
Polymer crystallization II
,”
Adv. Polym. Sci.
277
,
243
294
(
2016
).
37.
van Erp
,
T. B.
,
L.
Balzano
,
A. B.
Spoelstra
,
L. E.
Govaert
, and
G. W. M.
Peters
, “
Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of shear and pressure
,”
Polymer
53
,
5896
5908
(
2012
).
38.
Narimissa
,
E.
, and
M. H.
Wagner
, “
A hierarchical multimode molecular stress function model for linear polymer melts in extensional flows
,”
J. Rheol.
60
,
625
636
(
2016
).
39.
Wagner
,
M. H.
,
H.
Bastian
,
P.
Hachmann
,
J.
Meissner
,
S.
Kurzbeck
,
H.
Münstedt
, and
F.
Langouche
, “
The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows
,”
Rheol. Acta
39
,
97
109
(
2000
).
40.
Graham
,
R. S.
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
41.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
, 2nd ed. (
Oxford University
,
Oxford
,
1988
), Vol.
73
.
42.
Currie
,
P.
, “
Constitutive equations for polymer melts predicted by the Doi—Edwards and Curtiss—Bird kinetic theory models
,”
J. Non-Newtonian Fluid Mech.
11
,
53
68
(
1982
).
43.
Hassager
,
O.
, and
R.
Hansen
, “
Constitutive equations for the Doi–Edwards model without independent alignment
,”
Rheol. Acta
49
,
555
562
(
2010
).
44.
Hadinata
,
C.
,
D.
Boos
,
C.
Gabriel
,
E.
Wassner
,
M.
Rüllmann
,
N.
Kao
, and
M.
Laun
, “
Elongation-induced crystallization of a high molecular weight isotactic polybutene-1 melt compared to shear-induced crystallization
,”
J. Rheol.
51
,
195
215
(
2007
).
45.
Graham
,
R. S.
, and
P. D.
Olmsted
, “
Coarse-grained simulations of flow-induced nucleation in semicrystalline
,”
Phys. Rev. Lett.
103
,
115702
(
2009
).
46.
Wang
,
Z.
,
Z.
Ma
, and
L.
Li
, “
Flow-induced crystallization of polymers: Molecular and thermodynamic considerations
,”
Macromolecules
49
,
1505
1517
(
2016
).
47.
Zuidema
,
H.
,
G. W. M.
Peters
, and
H. E. H.
Meijer
, “
Development and validation of a recoverable strain-based model for flow-induced crystallization of polymers
,”
Macromol. Theory Simul.
10
,
447
460
(
2001
).
48.
Roozemond
,
P. C.
, and
G. W. M.
Peters
, “
Flow-enhanced nucleation of poly(1-butene): Model application to short-term and continuous shear and extensional flow
,”
J. Rheol.
57
,
1633
1653
(
2013
).
49.
Smook
,
J.
, and
A. J.
Pennings
, “
Elastic flow instabilities and shish-kebab formation during gel-spinning of ultra-high molecular weight polyethylene
,”
J. Mater. Sci.
19
,
31
43
(
1984
).
50.
Zhang
,
C.
,
H.
Hu
,
X.
Wang
,
Y.
Yao
,
X.
Dong
,
D.
Wang
,
Z.
Wang
, and
C. C.
Han
, “
Formation of cylindrite structures in shear-induced crystallization of isotactic polypropylene at low shear rate
,”
Polymer
48
,
1105
1115
(
2007
).
51.
Zhao
,
B.
,
X.
Li
,
Y.
Huang
,
Y.
Cong
,
Z.
Ma
,
C.
Shao
,
H.
An
,
T.
Yan
, and
L.
Li
, “
Inducing crystallization of polymer through stretched network
,”
Macromolecules
42
,
1428
1432
(
2009
).
You do not currently have access to this content.