We use molecular dynamics simulations to investigate the linear viscoelastic response of a model three-dimensional particulate gel. The numerical simulations are combined with a novel test protocol (the optimally windowed chirp or OWCh), in which a continuous exponentially varying frequency sweep windowed by a tapered cosine function is applied. The mechanical response of the gel is then analyzed in the Fourier domain. We show that (i) OWCh leads to an accurate computation of the full frequency spectrum at a rate significantly faster than with the traditional discrete frequency sweeps, and with a reasonably high signal-to-noise ratio, and (ii) the bulk viscoelastic response of the microscopic model can be described in terms of a simple mesoscopic constitutive model. The simulated gel response is in fact well described by a mechanical model corresponding to a fractional Kelvin-Voigt model with a single Scott-Blair (or springpot) element and a spring in parallel. By varying the viscous damping and the particle mass used in the microscopic simulations over a wide range of values, we demonstrate the existence of a single master curve for the frequency dependence of the viscoelastic response of the gel that is fully predicted by the constitutive model. By developing a fast and robust protocol for evaluating the linear viscoelastic spectrum of these soft solids, we open the path toward novel multiscale insight into the rheological response for such complex materials.

1.
Mezzenga
,
R.
,
P.
Schurtenberger
,
A.
Burbidge
, and
M.
Michel
, “
Understanding foods as soft materials
,”
Nat. Mater.
4
,
729
740
(
2005
).
2.
Lu
,
P.
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
453
,
499
503
(
2008
).
3.
Conrad
,
J. C.
, and
J. A.
Lewis
, “
Structure of colloidal gels during microchannel flow
,”
Langmuir
24
,
7628
7634
(
2008
).
4.
Helgeson
,
M.
,
S.
Moran
,
H.
An
, and
P.
Doyle
, “
Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions
,”
Nat. Mater.
11
,
344
352
(
2012
).
5.
Gibaud
,
T.
,
A.
Zaccone
,
E.
Del Gado
,
V.
Trappe
, and
P.
Schurtenberger
, “
Unexpected decoupling of stretching and bending modes in protein gels
,”
Phys. Rev. Lett.
110
,
058303
(
2013
).
6.
Zhao
,
X.
, “
Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks
,”
Soft Matter
10
,
672
687
(
2014
).
7.
Grindy
,
S.
,
R.
Learsch
,
D.
Mozhdehi
,
J.
Cheng
,
D.
Barrett
,
Z.
Guan
,
P.
Messersmith
, and
N.
Holten-Andersen
, “
Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics
,”
Nat. Mater.
14
,
1210
1217
(
2015
).
8.
Ewoldt
,
R. H.
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
9.
Ewoldt
,
R. H.
,
P.
Winter
,
J.
Maxey
, and
G. H.
McKinley
, “
Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
,”
Rheol. Acta
49
,
191
212
(
2010
).
10.
Laurati
,
M.
,
S.
Egelhaaf
, and
G.
Petekidis
, “
Nonlinear rheology of colloidal gels with intermediate volume fraction
,”
J. Rheol.
55
,
673
706
(
2011
).
11.
Mao
,
B.
,
T.
Divoux
, and
P.
Snabre
, “
Normal force controlled rheology applied to agar gelation
,”
J. Rheol.
60
,
473
489
(
2016
).
12.
Jaishankar
,
A.
, and
G. H.
McKinley
, “
Power-law rheology in the bulk and at the interface: Quasi-properties and fractional constitutive equations
,”
Proc. R. Soc. A
469
,
20120284
(
2013
).
13.
Helal
,
A.
,
T.
Divoux
, and
G. H.
McKinley
, “
Simultaneous rheoelectric measurements of strongly conductive complex fluids
,”
Phys. Rev. Appl.
6
,
064004
(
2016
).
14.
Aime
,
S.
,
L.
Ramos
,
J. M.
Fromental
,
G.
Prévot
,
R.
Jelinek
, and
L.
Cipelletti
, “
A stress-controlled shear cell for small-angle light scattering and microscopy
,”
Rev. Sci. Instrum.
87
,
123907
(
2016
).
15.
Laurati
,
M.
,
P.
Masshoff
,
K. J.
Mutch
,
S. U.
Egelhaaf
, and
A.
Zaccone
, “
Long-lived neighbors determine the rheological response of glasses
,”
Phys. Rev. Lett.
118
,
018002
(
2017
).
16.
Cipelletti
,
L.
, and
L.
Ramos
, “
Slow dynamics in glassy soft matter
,”
J. Phys.: Condens. Matter
17
,
R253
R285
(
2005
).
17.
Mohraz
,
A.
, and
M.
Solomon
, “
Orientation and rupture of fractal colloidal gels during start-up of steady shear flow
,”
J. Rheol.
49
,
657
681
(
2005
).
18.
Dibble
,
C. J.
,
M.
Kogan
, and
M. J.
Solomon
, “
Structural origins of dynamical heterogeneity in colloidal gels
,”
Phys. Rev. E
77
,
050401
(
2008
).
19.
Divoux
,
T.
,
D.
Tamarii
,
C.
Barentin
, and
S.
Manneville
, “
Transient shear banding in a simple yield stress fluid
,”
Phys. Rev. Lett.
104
,
208301
(
2010
).
20.
Divoux
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
Stress overshoot in a simple yield stress fluid: An extensive study combining rheology and velocimetry
,”
Soft Matter
7
,
9335
9349
(
2011
).
21.
Callaghan
,
P. T.
, “
Rheo NMR and shear banding
,”
Rheol. Acta
47
,
243
255
(
2008
).
22.
Manneville
,
S.
, “
Recent experimental probes of shear banding
,”
Rheol. Acta
47
,
301
318
(
2008
).
23.
Chan
,
H.
, and
A.
Mohraz
, “
A simple shear cell for the direct visualization of step-stress deformation in soft materials
,”
Rheol. Acta
52
,
383
394
(
2013
).
24.
Guo
,
H.
,
S.
Ramakrishnan
,
J. L.
Harden
, and
R. L.
Leheny
, “
Connecting nanoscale motion and rheology of gel-forming colloidal suspensions
,”
Phys. Rev. E
81
,
050401
(
2010
).
25.
Perge
,
C.
,
N.
Taberlet
,
T.
Gibaud
, and
S.
Manneville
, “
Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel
,”
J. Rheol.
58
,
1331
1357
(
2014
).
26.
Tamborini
,
E.
,
L.
Cipelletti
, and
L.
Ramos
, “
Plasticity of a colloidal polycrystal under cyclic shear
,”
Phys. Rev. Lett.
113
,
078301
(
2014
).
27.
Santos
,
P.
,
O.
Campanella
, and
M.
Carignano
, “
Effective attractive range and viscoelasticity of colloidal gels
,”
Soft Matter
9
,
709
714
(
2013
).
28.
Park
,
J.
, and
K.
Ahn
, “
Structural evolution of colloidal gels at intermediate volume fraction under start-up of shear flow
,”
Soft Matter
9
,
11650
11662
(
2013
).
29.
Colombo
,
J.
, and
E.
Del Gado
, “
Stress localization, stiffening, and yielding in a model colloidal gel
,”
J. Rheol.
58
,
1089
1116
(
2014
).
30.
Varga
,
Z.
, and
J. W.
Swan
, “
Linear viscoelasticity of attractive colloidal dispersions
,”
J. Rheol.
59
,
1271
1298
(
2015
).
31.
Landrum
,
B. J.
,
W. B.
Russel
, and
R. N.
Zia
, “
Delayed yield in colloidal gels: Creep, flow, and re-entrant solid regimes
,”
J. Rheol.
60
,
783
807
(
2016
).
32.
Jamali
,
S.
,
G. H.
McKinley
, and
R. C.
Armstrong
, “
Microstructural rearrangements and their rheological implications in a model thixotropic elastoviscoplastic fluid
,”
Phys. Rev. Lett.
118
,
048003
(
2017
).
33.
Bouzid
,
M.
,
J.
Colombo
,
L. V.
Barbosa
, and
E.
Del Gado
, “
Elastically driven intermittent microscopic dynamics in soft solids
,”
Nat. Commun.
8
,
15846
(
2017
).
34.
Bouzid
,
M.
, and
E.
Del Gado
, “
Network topology in soft gels: Hardening and softening materials
,”
Langmuir
34
,
773
781
(
2018
).
35.
Colombo
,
J.
,
A.
Widmer-Cooper
, and
E.
Del Gado
, “
Microscopic picture of cooperative processes in restructuring gel networks
,”
Phys. Rev. Lett.
110
,
198301
(
2013
).
36.
Visscher
,
P. B.
,
P. J.
Mitchell
, and
D. M.
Heyes
, “
Dynamic moduli of concentrated dispersions by Brownian dynamics
,”
J. Rheol.
38
,
465
483
(
1994
).
37.
Au
,
W. W. L.
, and
J. A.
Simmons
, “
Echolocation in dolphins and bats
,”
Phys. Today
60
(
9
),
40
45
(
2007
).
38.
Geri
,
M.
,
B.
Keshavarz
,
T.
Divoux
,
C.
Clasen
,
D. J.
Curtis
, and
G. H.
McKinley
, “
Time-resolved mechanical spectroscopy of soft materials via optimally windowed chirps
,” preprint arXiv:1804.03061 (
2018
).
39.
Chasset
,
R.
, and
P.
Thirion
, “
Viscoelastic relaxation of rubber vulcanizates between the glass transition and equilibrium
,” in
Proceedings of the Conference on Physics of Non-Crystalline Solids
(
North-Holland
, Amsterdam,
1965
), pp.
345
357
.
40.
Chambon
,
F.
,
Z. S.
Petrovic
,
W. J.
MacKnight
, and
H. H.
Winter
, “
Rheology of model polyurethanes at the gel point
,”
Macromolecules
19
,
2146
2149
(
1986
).
41.
Winter
,
H. H.
, and
M.
Mours
, “
Rheology of polymers near liquid-solid transitions
,”
Adv. Polym. Sci.
134
,
165
234
(
1997
).
42.
Holt
,
B.
,
A.
Tripathi
, and
J.
Morgan
, “
Viscoelastic response of human skin to low magnitude physiologically relevant shear
,”
J. Biomech.
41
,
2689
2695
(
2008
).
43.
Nicolle
,
S.
,
P.
Vezin
, and
J.-F.
Palierne
, “
A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues
,”
J. Biomech.
43
,
927
932
(
2010
).
44.
Koos
,
E.
, and
N.
Willenbacher
, “
Capillary forces in suspension rheology
,”
Science
331
,
897
900
(
2011
).
45.
Curro
,
J. G.
, and
P.
Pincus
, “
A theoretical basis for viscoelastic relaxation of elastomers in the long-time limit
,”
Macromolecules
16
,
559
562
(
1983
).
46.
McKenna
,
G. B.
, and
R. J.
Gaylord
, “
Relaxation of crosslinked networks—Theoretical-models and apparent power law behavior
,”
Polymer
29
,
2027
2032
(
1988
).
47.
Colombo
,
J.
, and
E.
Del Gado
, “
Self-assembly and cooperative dynamics of a model colloidal gel network
,”
Soft Matter
10
,
4003
4015
(
2014
).
48.
Derec
,
C.
,
G.
Ducouret
,
A.
Ajdari
, and
F.
Lequeux
, “
Aging and nonlinear rheology in suspensions of polyethylene oxide-protected silica particles
,”
Phys. Rev. E
67
,
061403
(
2003
).
49.
Rajaram
,
B.
, and
A.
Mohraz
, “
Dynamics of shear-induced yielding and flow in dilute colloidal gels
,”
Phys. Rev. E
84
,
011405
(
2011
).
50.
Sprakel
,
J.
,
S.
Lindström
,
T.
Kodger
, and
D.
Weitz
, “
Stress enhancement in the delayed yielding of colloidal gels
,”
Phys. Rev. Lett.
106
,
248303
(
2011
).
51.
Grenard
,
V.
,
T.
Divoux
,
N.
Taberlet
, and
S.
Manneville
, “
Timescales in creep and yielding of attractive gels
,”
Soft Matter
10
,
1555
1571
(
2014
).
52.
Keshavarz
,
B.
,
T.
Divoux
,
S.
Manneville
, and
G. H.
McKinley
, “
Nonlinear viscoelasticity and generalized failure criterion for polymer gels
,”
ACS Macro Lett.
6
,
663
667
(
2017
).
53.
Plimpton
,
S.
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
54.
Lees
,
A.
, and
S.
Edwards
, “
The computer study of transport processes under extreme conditions
,”
J. Phys. C: Solid State Phys.
5
(
15
),
1921
1929
(
1972
).
55.
Frenkel
,
D.
, and
B.
Smit
,
Understanding Molecular Simulation
(
Elsevier
,
London
,
2001
).
56.
Irving
,
J.
, and
J. G.
Kirkwood
, “
The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics
,”
J. Chem. Phys.
18
,
817
829
(
1950
).
57.
Macosko
,
C.
,
Rheology: Principles, Measurements, and Applications
(
Wiley
,
New York
,
1994
).
58.
Pintelon
,
R.
, and
J.
Schoukens
,
System Identification: A Frequency Domain Approach
(
Wiley
,
Hoboken, NJ
,
2012
).
59.
Winter
,
H. H.
, and
F.
Chambon
, “
Analysis of linear viscoelasticity of a crosslinking polymer at the gel point
,”
J. Rheol.
30
,
367
382
(
1986
).
60.
Mours
,
M.
, and
H. H.
Winter
, “
Time-resolved rheometry
,”
Rheol. Acta
33
,
385
397
(
1994
).
61.
Holly
,
E. E.
,
S. K.
Venkataraman
,
F.
Chambon
, and
H. H.
Winter
, “
Fourier transform mechanical spectroscopy of viscoelastic materials with transient structure
,”
J. Non-Newtonian Fluid Mech.
27
,
17
26
(
1988
).
62.
Tang
,
C.
,
C. D.
Saquing
,
J. R.
Harding
, and
S. A.
Khan
, “
In situ cross-linking of electrospun poly (vinyl alcohol) nanofibers
,”
Macromolecules
43
(
2
),
630
637
(
2010
).
63.
In
,
M.
, and
R. K.
Prud'homme
, “
Fourier transform mechanical spectroscopy of the sol-gel transition in zirconium alkoxide ceramic gels
,”
Rheol. Acta
32
,
556
565
(
1993
).
64.
Ross-Murphy
,
S. B.
, “
Rheological characterization of polymer gels and networks
,”
Polym. Gels Networks
2
,
229
237
(
1994
).
65.
Pogodina
,
N. V.
,
H. H.
Winter
, and
S.
Srinivas
, “
Strain effects on physical gelation of crystallizing isotactic polypropylene
,”
J. Polym. Sci., Part B
37
,
3512
3519
(
1999
).
66.
Schwittay
,
C.
,
M.
Mours
, and
H. H.
Winter
, “
Rheological expression of physical gelation in polymers
,”
Faraday Discuss.
101
,
93
104
(
1995
).
67.
Chiou
,
B.-S.
,
R. J.
English
, and
S. A.
Khan
, “
Rheology and photo-cross-linking of thiol-ene polymers
,”
Macromolecules
29
,
5368
5374
(
1996
).
68.
Klauder
,
J. R.
,
A. C.
Price
,
S.
Darlington
, and
W. J.
Albersheim
, “
The theory and design of chirp radars
,”
Bell Labs Tech. J.
39
,
745
808
(
1960
).
69.
Farina
,
A.
, “
Simultaneous measurement of impulse response and distortion with a swept-sine technique
,” in
Audio Engineering Society Convention 108
(
Audio Engineering Society
,
New York
,
2000
).
70.
Fausti
,
P.
, and
A.
Farina
, “
Acoustic measurements in opera houses: Comparison between different techniques and equipment
,”
J. Sound Vib.
232
,
213
229
(
2000
).
71.
Ghiringhelli
,
E.
,
D.
Roux
,
D.
Bleses
,
H.
Galliard
, and
F.
Caton
, “
Optimal Fourier rheometry: Application to the gelation of an alginate
,”
Rheol. Acta
51
,
413
420
(
2012
).
72.
Curtis
,
D.
,
A.
Holder
,
N.
Badiei
,
J.
Claypole
,
M.
Walters
,
B.
Thomas
,
M.
Barrow
,
D.
Deganello
,
M.
Brown
,
P.
Williams
, and
K.
Hawkins
, “
Validation of optimal Fourier rheometry for rapidly gelling materials and its application in the study of collagen gelation
,”
J. Non-Newtonian Fluid Mech.
222
,
253
259
(
2015
).
73.
Heyes
,
D. M.
,
P. J.
Mitchell
,
P. B.
Visscher
, and
J. R.
Melrose
, “
Brownian dynamics simulations of concentrated dispersions: Viscoelasticity and near-Newtonian behaviour
,”
J. Chem. Soc., Faraday Trans.
90
,
1133
1141
(
1994
).
74.
Heyes
,
D.
,
P.
Mitchell
, and
P.
Visscher
, “
Viscoelasticity and near-Newtonian behaviour of concentrated dispersions by Brownian dynamics simulations
,”
Trends Colloid Interface Sci.
97
,
179
182
(
1994
).
75.
Blackman
,
R. B.
, and
J. W.
Tukey
, “
The measurement of power spectra
,”
Bell Labs Tech. J.
37
,
185
282
(
1958
).
76.
Harris
,
F. J.
, “
On the use of windows for harmonic analysis with the discrete Fourier transform
,”
Proc. IEEE
66
,
51
83
(
1978
).
77.
J. W.
Tukey
, “
An introduction to the calculations of numerical spectrum analysis
,” in
Advanced Seminar on Spectral Analysis of Time Series
, edited by
B.
Harris
(
Wiley
,
New York
,
1967
), pp.
25
46
.
78.
Walters
,
K.
,
Rheometry
(
Chapman and Hall
,
Hoboken, NJ
,
1975
).
79.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
New York
,
1999
).
80.
Scott Blair
,
G. W.
, and
B. C.
Veinoglou
, “
A study of the firmness of soft materials based on Nutting's equation
,”
J. Sci. Instrum.
21
,
149
154
(
1944
).
81.
Scott Blair
,
G. W.
, “
Analytical and integrative aspects of the stress-strain-time problem
,”
J. Sci. Instrum.
21
,
80
84
(
1944
).
82.
Wagner
,
C. E.
,
A. C.
Barbati
,
J.
Engmann
,
A. S.
Burbidge
, and
G. H.
McKinley
, “
Quantifying the consistency and rheology of liquid foods using fractional calculus
,”
Food Hydrocolloids
69
,
242
254
(
2017
).
83.
Podlubny
,
I.
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
(
Academic
,
San Diego, CA
,
1998
), Vol.
198
.
84.
Schiessel
,
H.
,
R.
Metzler
,
A.
Blumen
, and
T. F.
Nonnenmacher
, “
Generalized viscoelastic models: Their fractional equations with solutions
,”
J. Phys. A
28
,
6567
6584
(
1995
).
85.
Bagley
,
R. L.
, and
P. J.
Torvik
, “
A theoretical basis for the application of fractional calculus to viscoelasticity
,”
J. Rheol.
27
,
201
210
(
1983
).
86.
Wharmby
,
A. W.
, and
R. L.
Bagley
, “
Generalization of a theoretical basis for the application of fractional calculus to viscoelasticity
,”
J. Rheol.
57
,
1429
1440
(
2013
).
87.
Friedrich
,
C.
,
H.
Schiessel
, and
A.
Blumen
, “
Constitutive behavior modeling and fractional derivatives
,” in
Advances in the Flow and Rheology of Non-Newtonian Fluids
, Rheology Series Vol. 8, edited by
D. A.
Siginer
,
D.
De Kee
, and
R. P.
Chhabra
(
Elsevier
,
Amsterdam, The Netherlands
,
1999
), pp.
429
466
.
88.
T. S.-K.
Ng
, and
McKinley
,
G. H.
, “
Power law gels at finite strains: The nonlinear rheology of gluten gels
,”
J. Rheol.
52
,
417
449
(
2008
).
89.
Shih
,
W.-H.
,
W. Y.
Shih
,
S.-I.
Kum
,
J.
Liu
, and
I. A.
Aksay
, “
Scaling behavior of the elastic properties of colloidal gels
,”
Phys. Rev. A
42
,
4772
4779
(
1990
).
90.
Bremer
,
L.
,
T.
van Vliet
, and
P.
Walstra
, “
Theoretical and experimental study of the fractal nature of the structure of casein gels
,”
J. Chem. Soc., Faraday Trans. I
85
,
3359
3372
(
1989
).
91.
Curtis
,
D. J.
,
P. R.
Williams
,
N.
Badiei
,
A. I.
Campbell
,
K.
Hawkins
,
P. A.
Evans
, and
M. R.
Brownd
, “
A study of microstructural templating in fibrin-thrombin gel networks by spectral and viscoelastic analysis
,”
Soft Matter
9
,
4883
4889
(
2013
).
92.
Hung
,
K.-C.
,
U.-S.
Jeng
, and
S.-H.
Hsu
, “
Fractal structure of hydrogels modulates stem cell behavior
,”
ACS Macro Lett.
4
,
1056
1061
(
2015
).
93.
Macosko
,
C. W.
,
Rheology: Principles, Measurements, and Applications
(
Wiley
,
Hoboken, NJ
,
1994
), p.
568
.
94.
Tassieri
,
M.
,
M.
Laurati
,
D. J.
Curtis
,
D. W.
Auhl
,
S.
Coppola
,
A.
Scalfati
,
K.
Hawkins
,
P. R.
Williams
, and
J. M.
Cooper
, “
i-Rheo: Measuring the materials' linear viscoelastic properties “in a step”
,”
J. Rheol.
60
,
649
(
2016
).
95.
Rouyer
,
J.
, and
A.
Poulesquen
, “
Evidence of a fractal percolating network during Geopolymerization
,”
J. Am. Ceramic Soc.
98
,
1580
1587
(
2015
).
96.
Aime
,
S.
,
L.
Cipelletti
, and
L.
Ramos
, “
Power law viscoelasticity of a fractal colloinal gel
,” preprint arXiv:1802.03820 (
2018
).
You do not currently have access to this content.