Experimental data for the pressure-driven flow of concentrated lignocellulosic biomass (corn stover) in a circular pipe are presented. A positive curvature was observed in the pressure profile at steady state, both when the biomass was flowing, and for several minutes after the flow had stopped. After the flow into the pipe was stopped, biomass continued to be expelled for at least five minutes, suggesting that the material is compressible. Occasionally, the pressure and outlet flow rate exhibited rapid, transient fluctuations. The fluctuations would cease when dryer-than-average heterogeneities exited the pipe. A mathematical model is developed to treat the biomass as a compressible Bingham fluid with a density-dependent yield stress. This model quantitatively reproduces steady-state pressure profiles for both flowing and nonflowing states, and captures the transition between the two states after the inlet flow rate is set to zero. Our model cannot predict the rapid pressure fluctuations that appear to be associated with heterogeneities in composition.

1.
Aden
,
A.
,.
M.
Ruth
,
K.
Ibsen
,
J.
Jechura
,
K.
Neeves
,
J.
Sheehan
,
B.
Wallace
,
L.
Montague
,
A.
Slayton
, and
J.
Lukas
, “
Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover
,”
NREL Technical Report No. TR-510-32438
(
2002
).
2.
Schell
,
D. J.
,
J.
Farmer
,
M.
Newman
, and
J. D.
McMillan
, “
Dilute–sulfuric acid pretreatment of corn stover in pilot-scale reactor. Investigation of yields, kinetics, and enzymatic digestibilities of solids
,”
Appl. Biochem. Biotechnol.
105
,
69
85
(
2003
).
3.
Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generatio Hydrocarbon Biorefineries
, edited by
G.
Huber
(
National Science Foundation, Chemical Bioengineering, Environmental, and Transport Systems Division
,
Washington D.C
,
2008
).
4.
Wettstein
,
S. G.
,
D. M.
Alonso
,
Y.
Chong
, and
J. A.
Dumesic
, “
Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems
,”
Energy Environ. Sci.
5
,
8199
8203
(
2012
).
5.
Wooley
,
R.
,
M.
Ruth
,
J.
Sheehan
,
K.
Ibsen
,
H.
Majdeski
, and
A.
Galvez
, “
Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios
,”
NREL Technical Report No. TP-580-26157
(
1999
).
6.
Sheehan
,
J.
,
A.
Aden
,
K.
Paustian
,
K.
Killian
,
J.
Brenner
,
M.
Walsh
, and
R.
Nelson
, “
Energy and environmental aspects of using corn stover for fuel ethanol
,”
J. Ind. Ecol.
7
,
117
146
(
2003
).
7.
Wyman
,
C. E.
, “
What is (and is not) vital to advancing cellulosic ethanol
,”
Trends Biotechnol.
25
,
153
157
(
2007
).
8.
Lynd
,
L. R.
, “
Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy
,”
Annu. Rev. Energy Environ.
21
,
403
465
(
1996
).
9.
Wingren
,
A.
,
M.
Galbe
, and
G.
Zacchi
, “
Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks
,”
Biotechnol. Prog.
19
,
1109
1117
(
2003
).
10.
Jorgensen
,
H.
,
J.
Vibe-Pedersen
,
J.
Larsen
, and
C.
Felby
, “
Liquefaction of lignocellulose at high-solids concentrations
,”
Biotechnol. Bioeng.
96
,
862
870
(
2007
).
11.
Hodge
,
D. B.
,
M. N.
Karim
,
D. J.
Schell
, and
J. D.
McMillan
, “
Model-based fed-batch for high-solids enzymatic cellulose hydrolysis
,”
Appl. Biochem. Biotechnol.
152
,
88
107
(
2009
).
12.
Roche
,
C. M.
,
C. J.
Dibble
,
J. S.
Knutsen
,
J. J.
Stickel
, and
M. W.
Liberatore
, “
Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings
,”
Biotechnol. Bioeng.
104
,
290
300
(
2009
).
13.
Rosgaard
,
L.
,
P.
Andric
,
K.
Dam-Johansen
,
S.
Pedersen
, and
A. S.
Meyer
, “
Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw
,”
Appl. Biochem. Biotechnol.
143
,
27
40
(
2007
).
14.
Um
,
B.
, and
T. R.
Hanley
, “
A comparison of simple rheological parameters and simulation data for zymomonas mobilis fermentation broths with high substrate loading in a 3-L bioreactor
,”
Appl. Biochem. Biotechnol.
145
,
29
38
(
2008
).
15.
Lu
,
Y.
,
Y.
Wang
,
G.
Xu
,
J.
Chu
,
Y.
Zhuang
, and
S.
Zhang
, “
Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass
,”
Appl. Biochem. Biotechnol.
160
,
360
369
(
2010
).
16.
Viamajala
,
S.
,
J. D.
McMillan
,
D. J.
Schell
, and
R. T.
Elander
, “
Rheology of corn stover slurries at high solids concentrations Effects of saccharification and particle size
,”
Bioresource Technol.
100
,
925
934
(
2009
).
17.
Pimenova
,
N.
, and
T.
Hanley
, “
Measurement of rheological properties of corn stover suspensions
,”
Appl. Biochem. Biotechnol.
106
,
383
392
(
2003
).
18.
Stickel
,
J. J.
,
J. S.
Knutsen
,
M. W.
Liberatore
,
W.
Luu
,
D. W.
Bousfield
,
D. J.
Klingenberg
,
C. T.
Scott
,
T. W.
Root
,
M.
Ehrhardt
, and
T. O.
Monz
, “
Rheology measurements of a biomass slurry: An inter-laboratory study
,”
Rheol. Acta
48
,
1005
1015
(
2009
).
19.
Knutsen
,
J. S.
, and
M. W.
Liberatore
, “
Rheology of high-solids biomass slurries for biorefinery applications
,”
J. Rheol.
53
,
877
892
(
2009
).
20.
Samaniuk
,
J. R.
,
C. T.
Scott
,
T. W.
Root
, and
D. J.
Klingenberg
, “
Rheological modification of corn stover biomass at high solids concentrations
,”
J. Rheol.
56
,
649
665
(
2012
).
21.
Chase
,
W. C.
,
A. A.
Donatelli
, and
J. W.
Walkinshaw
, “
Effects of freeness and consistency on the viscosity of hardwood and softwood pulp suspensions
,”
Tappi J.
72
,
199
204
(
1989
).
22.
Pimenova
,
N.
, and
T.
Hanley
, “
Effect of corn stover concentration on rheological characteristics
,”
Appl. Biochem. Biotechnol.
114
,
347
360
(
2004
).
23.
Ehrhardt
,
M. R.
,
T. O.
Monz
,
T. W.
Root
,
R. K.
Connelly
,
C. T.
Scott
, and
D. J.
Klingenberg
, “
Rheology of dilute acid hydrolyzed corn stover at high solids concentration
,”
Appl. Biochem. Biotech.
160
,
1102
1115
(
2010
).
24.
Samaniuk
,
J. R.
,
J.
Wang
,
T. W.
Root
,
C. T.
Scott
, and
D. J.
Klingenberg
, “
Rheology of concentrated biomass
,”
Korea-Aust. Rheol. J.
23
,
237
245
(
2011
).
25.
Bennington
,
C. P. J.
,
R. J.
Kerekes
, and
J. R.
Grace
, “
The yield stress of fibre suspensions
,”
Can. J. Chem. Eng.
68
,
748
757
(
1990
).
26.
Dalpke
,
B.
, and
R.
Kerekes
, “
The influence of fibre properties on the apparent yield stress of flocculated pulp suspensions
,”
J. Pulp Paper Sci.
31
,
39
43
(
2005
).
27.
Kerekes
,
R. J.
,
R. M.
Soszynski
, and
P. A.
Tam Doo
, “
The flocculation of pulp fibres
,” in
Papermaking Raw Materials, Transactions of the Eighth Fundamental Research Symposium
, edited by
V.
Punton
(
Mechanical Engineering Publications Limited
,
London
,
1985
), p.
265310
.
28.
Kerekes
,
R.
, “
Rheology of fibre suspensions in papermaking: An overview of recent research
,”
Nordic Pulp Paper Res. J.
21
,
598
612
(
2006
).
29.
Derakhshandeh
,
B.
,
S. G.
Hatzikiriakos
, and
C. P. J.
Bennington
, “
The apparent yield stress of pulp fiber suspensions
,”
J. Rheol.
54
,
1137
1154
(
2010
).
30.
Botto
,
L.
,
K.
Preuss
,
L. X.
Robertson
, and
X. Y.
Xu
, “
Physical characterisation and yield stress of a concentrated Miscanthus suspension
,”
Rheol. Acta
53
,
805
815
(
2014
).
31.
Samaniuk
,
J. R.
,
C. T.
Scott
,
T. W.
Root
, and
D. J.
Klingenberg
, “
The effect of high intensity mixing on the enzymatic hydrolysis of concentrated cellulose fiber suspensions
,”
Bioresource Technol.
102
,
4489
4494
(
2011
).
32.
Switzer
 III,
L. H.
, and
D. J.
Klingenberg
, “
Rheology of sheared flexible fiber suspensions via fiber-level simulations
,”
J. Rheol.
47
,
759
778
(
2003
).
33.
Wang
,
J.
, Ph.D. thesis,
University of Wisconsin-Madison
,
2013
.
34.
Bergman
,
J.
, and
N.
Takamura
, “
The correlation between the shear modulus of fibre networks and the individual fibre stiffness
,”
Svensk Papperstidn.
68
,
703
710
(
1965
).
35.
Almin
,
K. E.
,
P.
Biel
, and
D.
Wahren
, “
Relating the shear modulus of fibre networks to the bulk average fiber stiffness
,”
Svensk Papperstidn.
70
,
772
774
(
1967
).
36.
Knutsen
,
J. S.
, and
M. W.
Liberatore
, “
Rheology modification and enzyme kinetics of high solids cellulosic slurries
,”
Energy Fuels
24
,
3267
3274
(
2010
).
37.
Zauscher
,
S.
,
C. T.
Scott
,
J. L.
Willett
, and
D. J.
Klingenberg
, “
Pulp extrusion for recycling wastepapers and paper mill sludges
,”
TAPPI J.
83
,
62
(
2000
).
38.
Zauscher
,
S.
, Ph.D. thesis,
University of Wisconsin-Madison
,
2000
.
39.
Zauscher
,
S.
, and
D. J.
Klingenberg
, “
Friction forces between cellulose surfaces measured with colloidal probe microscopy
,”
Coll. Surf. A
178
,
213
229
(
2001
).
40.
Schmid
,
C. F.
, and
D. J.
Klingenberg
, “
Mechanical flocculation of flowing fiber suspensions
,”
Phys. Rev. Lett.
84
,
290
293
(
2000
).
41.
Schmid
,
C. F.
,
L. H.
Switzer
, and
D. J.
Klingenberg
, “
Simulations of flocculation: Effects of fiber properties and interfiber friction
,”
J. Rheol.
44
,
781
809
(
2000
).
42.
Mišljenović
,
N.
,
Q.-V.
Bach
,
K.-Q.
Tran
,
C.
Salas-Bringas
, and
Ø.
Skreiberg
, “
Torrefaction influence on pelletability and pellet quality of Norwegian forest residues
,”
Energy Fuels
28
,
2554
2561
(
2014
).
43.
Faborode
,
M. O.
, and
J. R.
O'Callaghan
, “
Theoretical analysis of the compression of fibrous agricultural materials
,”
J. Agric. Eng. Res.
35
,
175
191
(
1986
).
44.
Mani
,
S.
,
L. G.
Tabil
, and
S.
Sokhansanj
, “
Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses
,”
Biomass Bioenergy
30
,
648
654
(
2006
).
45.
Križan
,
P.
,
M.
Matú
,
Ľ.
Šooš
, and
J.
Beniak
, “
Behavior of beech sawdust during densification into a solid biofuel
,”
Energies
8
,
6382
6398
(
2015
).
46.
Salas-Bringas
,
C.
,
T.
Filbakk
,
G.
Skjevrak
,
O.-I.
Lekang
,
O.
Hoibo
, and
R. B.
Schuller
, “
Compression rheology and physical quality of wood pellets pre-handled with four different conditions
,”
Ann. Trans. Nordic Rheol. Soc.
18
,
87
94
(
2010
).
47.
Vinay
,
G.
,
A.
Wachs
, and
J.-F.
Agassant
, “
Numerical simulation of weakly compressible Bingham flows: The restart of pipeline flows of waxy crude oils
,”
J. Non-Newtonian Fluid Mech.
136
,
93
105
(
2006
).
48.
Vinay
,
G.
,
A.
Wachs
, and
I.
Frigaard
, “
Start-up transients and efficient computation of isothermal waxy crude oil flows
,”
J. Non-Newtonian Fluid Mech.
143
,
141
156
(
2007
).
49.
Wachs
,
A.
,
G.
Vinay
, and
I.
Frigaard
, “
A 1.5d numerical model for the start up of weakly compressible flow of a viscoplastic and thixotropic fluid in pipelines
,”
J. Non-Newtonian Fluid Mech.
159
,
81
94
(
2009
).
50.
Samaniuk
,
J. R.
, “
Measurement and modification of biomass rheological properties
,” Ph.D. thesis,
University of Wisconsin-Madison
,
2012
.
51.
Samaniuk
,
J. R.
,
C. T.
Scott
,
T. W.
Root
, and
D. J.
Klingenberg
, “
Effects of process variables on the yield stress of rheologically modified biomass
,”
Rheol. Acta
54
,
941
949
(
2015
).
52.
Bird
,
R. B.
,
W. E.
Stewart
,
E. N.
Lightfoot
, and
D. J.
Klingenberg
,
Introductory Transport Phenomena
(
Wiley
,
New York
,
2015
).
53.
See supplementary material at https://doi.org/10.1122/1.5009943 for experimental and model fitting results for all 8 trials.
54.
Tang
,
H. S.
, and
D. M.
Kalyon
, “
Time-dependent tube flow of compressible suspensions subject to pressure dependent wall slip: Ramifications on development of flow instabilities
,”
J. Rheol.
52
,
1069
1090
(
2008
).
55.
Yaras
,
P.
,
D. M.
Kalyon
, and
U.
Yilmazer
, “
Flow instabilities in capillary flow of concentrated suspensions
,”
Rheol. Acta
33
,
48
59
(
1994
).
56.
Yilmazer
,
U.
,
C. G.
Gogos
, and
D. M.
Kalyon
, “
Mat formation and unstable flows of highly filled suspensions in capillaries and continuous processors
,”
Polym. Comp.
10
,
242
248
(
1989
).
57.
Haw
,
M. D.
, “
Jamming, two-fluid behavior, and “self-filtration” in concentrated particulate suspensions
,”
Phys. Rev. Lett.
92
,
185506
(
2004
).
58.
Chen
,
S. S.
,
L. T.
Fan
, and
C. L.
Hwang
, “
Entrance region flow of the Bingham fluid in a circular pipe
,”
AICHE J.
16
,
293
299
(
1970
).
59.
Bachelor
,
G. K.
, and
J. T.
Green
, “
The determination of the bulk stress in a suspension of spherical particles to order c2
,”
J. Fluid Mech.
56
,
401
427
(
1972
).
60.
Klingenberg
,
D. J.
,
T. W.
Root
,
S.
Burlawar
,
C. T.
Scott
,
K. J.
Bourne
,
R.
Gleisner
,
C.
Houtman
, and
V.
Subramaniam
, “
Rheometry of coarse biomass at high temperature and pressure
,”
Biomass Bioenergy
99
,
69
78
(
2017
).

Supplementary Material

You do not currently have access to this content.