Structure formation and aging in different arrested states of Laponite dispersions have been investigated at the macro- and microscale. Covering a wide range of solid content and salt concentrations at different pH glasses, strong and weak gels with prevailing edge-to-face (EF) or face-to-face (FF) layer contacts were formed. Mechanical shear and squeeze flow rheometry were combined with diffusing wave spectroscopy and multiple particle tracking (MPT) microrheology. Strong attractive gels form much more quickly than weak gels, and particularly repulsive glasses. Gels with preferred EF contacts are stronger and are created more quickly than gels with prevailing FF contacts. Strong gels show little aging and exhibit a weak increase of G′tα with α = 0.11 ± 0.03, higher α values are found for weak gels, and the strongest aging is observed in glasses. MPT data reveal structural refinement at the submicrometer length scale during aging for gels but not for glasses. Strong structural heterogeneity most pronounced at pH = 8.5 occurs during gel or glass formation, but at longer times, all arrested states appear homogenous at the 0.2 μm length scale. Finally, all arrested states exhibit power law frequency dependence G″ω0.75 at high frequencies attributed to internal bending modes of layers.

1.
Jabbari-Farouji
,
S.
,
H.
Tanaka
,
G. H.
Wegdam
, and
D.
Bonn
, “
Multiple nonergodic disordered states in Laponite suspensions: A phase diagram
,”
Phys. Rev. E
78
(
6
),
061405
(
2008
).
2.
Levitz
,
P.
,
E.
Lecolier
,
A.
Mourchid
,
A.
Delville
, and
S.
Lyonnard
, “
Liquid-solid transition of Laponite suspensions at very low ionic strength: Long-range electrostatic stabilisation of anisotropic colloids
,”
Europhys. Lett.
49
(
5
),
672
677
(
2000
).
3.
Tanaka
,
H.
,
J.
Meunier
, and
D.
Bonn
, “
Nonergodic states of charged colloidal suspensions: Repulsive and attractive glasses and gels
,”
Phys. Rev. E
69
,
031404
(
2004
).
4.
Mourchid
,
A.
,
E.
Lécolier
,
H.
Van Damme
, and
P.
Levitz
, “
On viscoelastic, birefringent, and swelling properties of laponite clay suspensions: Revisited phase diagram
,”
Langmuir
14
(
17
),
4718
4723
(
1998
).
5.
Mongondry
,
P.
,
J. F.
Tassin
, and
T.
Nicolai
, “
Revised state diagram of Laponite dispersions
,”
J. Colloid Interface Sci.
283
(
2
),
397
405
(
2005
).
6.
Ruzicka
,
B.
, and
E.
Zaccarelli
, “
A fresh look at the Laponite phase diagram
,”
Soft Matter
7
,
1268
1286
(
2011
).
7.
Ruzicka
,
B.
,
L.
Zulian
, and
G.
Ruocco
, “
More on the phase diagram of laponite
,”
Langmuir
22
(
3
),
1106
1111
(
2006
).
8.
Fossum
,
J. O.
, “
Physical phenomena in clays
,”
Phys. A Stat. Mech. Appl.
270
(
1
),
270
277
(
1999
).
9.
Dijkstra
,
M.
,
J. P.
Hansen
, and
P. A.
Madden
, “
Gelation of a clay colloid suspension
,”
Phys. Rev. Lett.
75
(
11
),
2236
2239
(
1995
).
10.
Nicolai
,
T.
, and
S.
Cocard
, “
Structure of gels and aggregates of disk-like colloids
,”
Eur. Phys. J. E
5
,
221
227
(
2001
).
11.
Mori
,
Y.
,
K.
Togashi
, and
K.
Nakamura
, “
Colloidal properties of synthetic hectorite clay dispersion measured by dynamic light scattering and small angle X-ray scattering
,”
Adv. Powder Technol.
12
(
1
),
45
59
(
2001
).
12.
Tawari
,
S. L.
,
D. L.
Koch
, and
C.
Cohen
, “
Electrical double-layer effects on the Brownian diffusivity and aggregation rate of Laponite clay particles
,”
J. Colloid Interface Sci.
240
,
54
66
(
2001
).
13.
Bonn
,
D.
,
H.
Tanaka
,
G.
Wegdam
,
H.
Kellay
, and
J.
Meunier
, “
Aging of a colloidal ‘Wigner’ glass
,”
Europhys. Lett.
45
(
1
),
52
57
(
1999
).
14.
Tombácz
,
E.
, and
M.
Szekeres
, “
Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of indifferent electrolytes
,”
Appl. Clay Sci.
27
,
75
94
(
2004
).
15.
Lagaly
,
G.
, and
S.
Ziesmer
, “
Colloid chemistry of clay minerals: The coagulation of montmorillonite dispersions
,”
Adv. Colloid Interface Sci.
100–102
,
105
128
(
2003
).
16.
Odriozola
,
G.
,
M.
Romero-Bastida
, and
F. D. J.
Guevara-Rodríguez
, “
Brownian dynamics simulations of Laponite colloid suspensions
,”
Phys. Rev. E
70
(
2
),
1
15
(
2004
).
17.
Jönsson
,
B.
,
C.
Labbez
, and
B.
Cabane
, “
Interaction of nanometric clay platelets
,”
Langmuir
24
(
20
),
11406
11413
(
2008
).
18.
Van Olphen
,
H.
,
An Introduction to Clay Colloid Chemistry, for Clay Technologists, Geologists, and Soil Scientists
, 2nd ed. (
John Wiley & Sons
,
New York
,
1977
).
19.
Dijkstra
,
M.
,
J.-P.
Hansen
, and
P. A.
Madden
, “
Statistical model for the structure and gelation of smectite clay suspensions
,”
Phys. Rev. E
55
(
3
),
3044
3053
(
1997
).
20.
Okamoto
,
M.
,
P. H.
Nam
,
P.
Maiti
,
T.
Kotaka
,
N.
Hasegawa
, and
A.
Usuki
, “
A house of cards structure in polypropylene/clay nanocomposites under elongational flow
,”
Nano Lett.
1
(
6
),
295
298
(
2001
).
21.
Hofmann
,
U.
, and
A.
Hausdorf
, “
Uber das Sedimentvolumen und die Quellung von Bentonit
,”
Kolloid Zeitschrift
110
(
1
),
1
17
(
1945
).
22.
Ramos-Tejada
,
M. M.
,
F. J.
Arroyo
,
R.
Perea
, and
J. D. G.
Durán
, “
Scaling behavior of the rheological properties of montmorillonite suspensions: Correlation between interparticle interaction and degree of flocculation
,”
J. Colloid Interface Sci.
235
(
2
),
251
259
(
2001
).
23.
Durán
,
J. D. G.
,
M. M.
Ramos-Tejada
,
F. J.
Arroyo
, and
F.
González-Caballero
, “
Rheological and electrokinetic properties of sodium montmorillonite suspensions. I. Rheological properties and interparticle energy of interaction
,”
J. Colloid Interface Sci.
229
,
107
117
(
2000
).
24.
Zbik
,
M. S.
,
D. J.
Williams
,
Y. F.
Song
, and
C.-C.
Wang
, “
The formation of a structural framework in gelled Wyoming bentonite: Direct observation in aqueous solutions
,”
J. Colloid Interface Sci.
435
,
119
127
(
2014
).
25.
Abend
,
S.
, and
G.
Lagaly
, “
Sol-gel transitions of sodium montmorillonite dispersions
,”
Appl. Clay Sci.
16
,
201
227
(
2000
).
26.
Giannakopoulos
,
E.
,
P.
Stathi
,
K.
Dimos
,
D.
Gournis
,
Y.
Sanakis
, and
Y.
Deligiannakis
, “
Adsorption and radical stabilization of humic-acid analogues and Pb2+ on restricted phyllomorphous clay
,”
Langmuir
22
(
16
),
6863
6873
(
2006
).
27.
Ruzicka
,
B.
,
L.
Zulian
, and
G.
Ruocco
, “
Routes to gelation in a clay suspension
,”
Phys. Rev. Lett.
93
(
25
),
258301
(
2004
).
28.
Ruzicka
,
B.
,
L.
Zulian
,
R.
Angelini
,
M.
Sztucki
,
A.
Moussaïd
, and
G.
Ruocco
, “
Arrested state of clay-water suspensions: Gel or glass?
,”
Phys. Rev. E
77
(
2
),
020402
(
2008
).
29.
Jabbari-Farouji
,
S.
,
R.
Zargar
,
G. H.
Wegdam
, and
D.
Bonn
, “
Dynamical heterogeneity in aging colloidal glasses of Laponite
,”
Soft Matter
8
,
5507
5512
(
2012
).
30.
Jabbari-Farouji
,
S.
,
G. H.
Wegdam
, and
D.
Bonn
, “
Gels and glasses in a single system: Evidence for an intricate free-energy landscape of glassy materials
,”
Phys. Rev. Lett.
99
(
6
),
065701
(
2007
).
31.
Knaebel
,
A.
,
M.
Bellour
,
J.-P.
Munch
,
V.
Viasnoff
,
F.
Lequeux
, and
J. L.
Harden
, “
Aging behavior of Laponite clay particle suspensions
,”
Europhys. Lett.
52
(
1
),
73
79
(
2000
).
32.
Oppong
,
F. K.
,
P.
Coussot
, and
J. R.
De Bruyn
, “
Gelation on the microscopic scale
,”
Phys. Rev. E
78
(
2
),
021405
(
2008
).
33.
Jabbari-Farouji
,
S.
,
M.
Atakhorami
,
D.
Mizuno
,
E.
Eiser
,
G. H.
Wegdam
,
F. C.
MacKintosh
,
D.
Bonn
, and
C. F.
Schmidt
, “
High-bandwidth viscoelastic properties of aging colloidal glasses and gels
,”
Phys. Rev. E
78
(
6
),
061402
(
2008
).
34.
Bonn
,
D.
,
S.
Tanase
,
B.
Abou
,
H.
Tanaka
, and
J.
Meunier
, “
Laponite: Aging and shear rejuvenation of a colloidal glass
,”
Phys. Rev. Lett.
89
(
1
),
015701
(
2002
).
35.
Shahin
,
A.
, and
Y. M.
Joshi
, “
Irreversible aging dynamics and generic phase behavior of aqueous suspensions of Laponite
,”
Langmuir
26
(
6
),
4219
4225
(
2010
).
36.
Willenbacher
,
N.
, “
Unusual thixotropic properties of aqueous dispersions of Laponite RD
,”
J. Colloid Interface Sci.
182
(
2
),
501
510
(
1996
).
37.
Labanda
,
J.
, and
J.
Llorens
, “
Effect of aging time on the rheology of Laponite dispersions
,”
Colloids Surf. A Physicochem. Eng. Asp.
329
,
1
6
(
2008
).
38.
Mourchid
,
A.
,
A.
Delville
,
J.
Lambard
,
E.
Lécolier
, and
P.
Levitz
, “
Phase diagram of colloidal dispersions of anisotropic charged particles: Equilibrium properties, structure, and rheology of Laponite suspensions
,”
Langmuir
11
(
6
),
1942
1950
(
1995
).
39.
Kroon
,
M.
,
W. L.
Vos
, and
G. H.
Wegdam
, “
Structure and formation of a gel of colloidal disks
,”
Phys. Rev. E
57
(
2
),
1962
1970
(
1998
).
40.
Rich
,
J. P.
,
G. H.
McKinley
, and
P. S.
Doyle
, “
Size dependence of microprobe dynamics during gelation of a discotic colloidal clay
,”
J. Rheol.
55
(
2
),
273
299
(
2011
).
41.
Bonn
,
D.
,
H.
Kellay
,
H.
Tanaka
,
G.
Wegdam
, and
J.
Meunier
, “
Laponite: What is the difference between a gel and a glass?
,”
Langmuir
15
(
22
),
7534
7536
(
1999
).
42.
Meier
,
L. P.
, and
G.
Kahr
, “
Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine
,”
Clays Clay Miner.
47
(
3
),
386
388
(
1999
).
43.
Delavernhe
,
L.
,
A.
Steudel
,
G. K.
Darbha
,
T.
Schäfer
,
R.
Schuhmann
,
C.
Wöll
,
H.
Geckeis
, and
K.
Emmerich
, “
Influence of mineralogical and morphological properties on the cation exchange behavior of dioctahedral smectites
,”
Colloids Surf. A Physicochem. Eng. Asp.
481
,
591
599
(
2015
).
44.
Awasthi
,
V.
, and
Y. M.
Joshi
, “
Effect of temperature on aging and time-temperature superposition in nonergodic Laponite suspensions
,”
Soft Matter
5
,
4991
4996
(
2009
).
45.
Delavernhe
,
L.
,
M.
Pilavtepe
, and
K.
Emmerich
, “
Cation exchange capacity of natural and synthetic hectorite
,”
Appl. Clay Sci.
151
,
175
180
(
2018
).
46.
Au
,
P. I.
,
S.
Hassan
,
J.
Liu
, and
Y. K.
Leong
, “
Behaviour of Laponite gels: Rheology, ageing, pH effect and phase state in the presence of dispersant
,”
Chem. Eng. Res. Des.
101
,
65
73
(
2015
).
47.
Crassous
,
J. J.
,
R.
Régisser
,
M.
Ballauff
, and
N.
Willenbacher
, “
Characterization of the viscoelastic behavior of complex fluids using the piezoelastic axial vibrator
,”
J. Rheol.
49
(
4
),
851
863
(
2005
).
48.
Mason
,
T. G.
, and
D. A.
Weitz
, “
Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids
,”
Phys. Rev. Lett.
74
(
7
),
1250
1253
(
1995
).
49.
Oelschlaeger
,
C.
,
M.
Schopferer
,
F.
Scheffold
, and
N.
Willenbacher
, “
Linear-to-branched micelles transition: A rheometry and diffusing wave spectroscopy (DWS) study
,”
Langmuir
25
(
2
),
716
723
(
2009
).
50.
Kowalczyk
,
A.
,
C.
Oelschlaeger
, and
N.
Willenbacher
, “
Tracking errors in 2D multiple particle tracking microrheology
,”
Meas. Sci. Technol.
26
,
015302
(
2015
).
51.
Crocker
,
J. C.
, and
D. G.
Grier
, “
Methods of digital video microscopy for colloidal studies
,”
J. Colloid Interface Sci.
179
,
298
310
(
1996
).
52.
Savin
,
T.
, and
P. S.
Doyle
, “
Static and dynamic errors in particle tracking microrheology
,”
Biophys. J.
88
(
1
),
623
638
(
2005
).
53.
Winter
,
H. H.
, and
F.
Chambon
, “
Analysis of linear viscoelasticity of a crosslinking polymer at the gel point
,”
J. Rheol.
30
(
2
),
367
382
(
1986
).
54.
Tournassat
,
C.
,
E.
Ferrage
,
C.
Poinsignon
, and
L.
Charlet
, “
The titration of clay minerals: II. Structure-based model and implications for clay reactivity
,”
J. Colloid Interface Sci.
273
,
234
246
(
2004
).
55.
Struik
,
L. C. E.
,
Physical Aging in Amorphous Polymers and Other Materials
(
Elsevier Scientific Pub. Co.
,
New York
,
1978
).
56.
Lifshitz
,
I. M.
, and
V. V.
Slyozov
, “
The kinetics of precipitation from supersaturated solid solutions
,”
J. Phys. Chem. Solids
19
(
1
),
35
50
(
1961
).
57.
Ianni
,
F.
,
R.
Di Leonardo
,
S.
Gentilini
, and
G.
Ruocco
, “
Aging after shear rejuvenation in a soft glassy colloidal suspension: Evidence for two different regimes
,”
Phys. Rev. E
75
(
1
),
011408
(
2007
).
58.
Ruzicka
,
B.
,
E.
Zaccarelli
,
L.
Zulian
,
R.
Angelini
,
M.
Sztucki
,
A.
Moussaid
,
T.
Narayanan
, and
F.
Sciortino
, “
Observation of empty liquids and equilibrium gels in a colloidal clay
,”
Nat. Mater.
10
,
56
60
(
2011
).
59.
Morse
,
D. C.
, “
Viscoelasticity of tightly entangled solutions of semiflexible polymers
,”
Phys. Rev. E
58
(
2
),
R1237
R1240
(
1998
).
60.
Gittes
,
F.
, and
F.
MacKintosh
, “
Dynamic shear modulus of a semiflexible polymer network
,”
Phys. Rev. E
58
(
2
),
R1241
R1244
(
1998
).
61.
Pawelzyk
,
P.
,
N.
Mücke
,
H.
Herrmann
, and
N.
Willenbacher
, “
Attractive interactions among intermediate filaments determine network mechanics in vitro
,”
PLoS One
9
(
9
),
1
9
(
2014
).
62.
Petit
,
L.
,
C.
Barentin
,
J.
Colombani
,
C.
Ybert
, and
L.
Bocquet
, “
Size dependence of tracer diffusion in a laponite colloidal gel
,”
Langmuir
25
(
20
),
12048
12055
(
2009
).
63.
Strachan
,
D. R.
,
G. C.
Kalur
, and
S. R.
Raghavan
, “
Size-dependent diffusion in an aging colloidal glass
,”
Phys. Rev. E
73
(
4
),
041509
(
2006
).
64.
Pignon
,
F.
,
A.
Magnin
,
J. M.
Piau
,
B.
Cabane
,
P.
Lindner
, and
O.
Diat
, “
Yield stress thixotropic clay suspension: Investigation of structure by light, neutron, and x-ray scattering
,”
Phys. Rev. E
56
(
3
),
3281
3289
(
1997
).
65.
Savin
,
T.
, and
P. S.
Doyle
, “
Statistical and sampling issues when using multiple particle tracking
,”
Phys. Rev. E
76
(
2
),
021501
(
2007
).
66.
Lu
,
P. J.
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
453
,
499
503
(
2008
).
You do not currently have access to this content.