Rheological modifiers are subject to processing steps, including mixing and dilution, that can have permanent structural effects. This work investigates rheological changes of a fibrous colloid, hydrogenated castor oil (HCO), when sheared during sample preparation. HCO is a polydisperse system that undergoes phase transitions in response to osmotic pressure gradients. Two HCO materials are characterized during phase transitions, a nonsheared 4 wt. % gel and a presheared 0.125 wt. % solution. Material properties are measured using multiple particle tracking (MPT) microrheology, μ2rheology, the combination of microfluidics and MPT, and bulk rheology. MPT quantitatively determines the critical relaxation exponent, n, which is constant for a material. MPT determines n is dependent on the starting HCO material, indicating that preshear has changed the structure. μ2rheology identifies consistent equilibrium states during consecutive phase transitions. Bulk rheology determines that the nonsheared gel does not completely degrade into a sol, indicated by no G′ and G″ crossover. The presheared material has a crossover indicating a sol-gel transition. The phases of HCO are identified by comparison of rheological data to previous work by Wilkins et al. [Langmuir 25, 8951–8959 (2009)], who determined the structure of a similar colloidal fiber system using confocal microscopy. The equilibrium moduli at the completion of both experiments are similar and indicate that the scaffold is in a transitional phase. These three techniques give consistent measurements of the rheological properties, and indicate the structure of the scaffold by comparison to previous works. During degradation, nonsheared HCO gels change from entangled networks to a transitional state with fiber entanglement. During gelation, presheared HCO solutions transition from bundles in solution to an associated network of bundles with few entanglements. These measurements confirm that shear history can permanently change rheological properties, affecting the scaffolds applications.

1.
Brinker
,
C.
, and
G.
Scherer
,
Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing
(
Academic
,
Cambridge, MA
,
2013
).
2.
Advani
,
S. G.
,
Flow and Rheology in Polymer Composites Manufacturing
(
Elsevier Science
,
Amsterdam, Netherlands
,
1994
), Vol.
10
.
3.
Wibowo
,
C.
, and
M. N.
Ka
, “
Product-oriented process synthesis and development: Creams and pastes,
AIChE J.
47
,
2746
2767
(
2001
).
4.
Wehrman
,
M. D.
,
S.
Lindberg
, and
K. M.
Schultz
, “
Quantifying the dynamic transition of hydrogenated castor oil gels measured via multiple particle tracking microrheology
,”
Soft Matter
12
,
6463
6472
(
2016
).
5.
Wehrman
,
M. D.
,
M. J.
Milstrey
,
S.
Lindberg
, and
K. M.
Schultz
, “
Using μ2rheology to quantify rheological properties during repeated reversible phase transitions of soft matter
,”
Lab Chip
17
,
2085
2094
(
2017
).
6.
Realdon
,
N.
,
F.
Perin
,
M.
Morpurgo
, and
E.
Ragazzi
, “
Influence of processing conditions in the manufacture of O/W creams
,”
Farmaco
57
,
341
347
(
2002
).
7.
Cates
,
M. E.
,
J. P.
Wittmer
,
J. P.
Bouchaud
, and
P.
Claudin
, “
Jamming, force chains, and fragile matter
,”
Phys. Rev. Lett.
81
,
1841
1844
(
1998
).
8.
Allain
,
C.
,
M.
Cloitre
, and
M.
Wafra
, “
Aggregation and sedimentation in colloidal suspensions
,”
Phys. Rev. Lett.
74
,
1478
1481
(
1995
).
9.
Schenkel
,
J. H.
, and
J. A.
Kitchener
, “
A test of the Derjaguin-Verwey-Overbeek theory with a colloidal suspension
,”
Trans. Faraday Soc.
56
,
161
173
(
1960
).
10.
Switzer
,
L. H.
, and
D. J.
Klingenberg
, “
Flocculation in simulations of sheared fiber suspensions
,”
Int. J. Multiphase Flow.
30
,
67
87
(
2004
).
11.
Schmid
,
C. F.
,
L. H.
Switzer
, and
D. J.
Klingenberg
, “
Simulations of fiber flocculation: Effects of fiber properties and interfiber friction
,”
J. Rheol.
44
,
781
809
(
2000
).
12.
Vigolo
,
B.
,
C.
Coulon
,
M.
Maugey
,
C.
Zakri
, and
P.
Poulin
, “
An experimental approach to the percolation of sticky nanotubes
,”
Science
309
,
920
923
(
2005
).
13.
Ein-Mozaffari
,
F.
,
C. P. J.
Bennington
, and
G. A.
Dumont
, “
Suspension yield stress and the dynamic response of agitated pulp chests
,”
Chem. Eng. Sci.
60
,
2399
2408
(
2005
).
14.
Philipse
,
A. P.
, and
A. M.
Wierenga
, “
On the density and structure formation in gels and clusters of colloidal rods and fibers
,”
Langmuir
14
,
49
54
(
1998
).
15.
Shankar
,
V.
,
M.
Pasquali
, and
D. C.
Morse
, “
Theory of linear viscoelasticity of semiflexible rods in dilute solution
,”
J. Rheol.
46
,
1111
1154
(
2002
).
16.
Trappe
,
V.
,
V.
Prasad
,
L.
Cipelletti
,
P. N.
Segre
, and
D. A.
Weitz
, “
Jamming phase diagram for attractive particles
,”
Nature
411
,
772
775
(
2001
).
17.
Lui
,
A. J.
, and
S. R.
Nagel
, “
Jamming is not just cool any more
,”
Nature
396
,
21
22
(
1998
).
18.
Huang
,
X.
,
S. R.
Raghavan
,
P.
Terech
, and
R. G.
Weiss
, “
Distinct Kinetic Pathways Generate Organogel Networks with Contrasting Fractality and Thixotropic Properties
,”
J. Am. Chem. Soc.
128
,
15341
15352
(
2006
).
19.
Yang
,
D.
, and
A.
Hrymak
, “
Crystal morphology of hydrogenated castor oil in the crystallization of oil-in-water emulsions
,”
Ind. Eng. Chem. Res.
50
,
11585
11593
(
2011
).
20.
Meirleir
,
N. D.
,
L.
Pellens
,
W.
Broeckx
, and
W. D.
Malshe
, “
The emulsion crystallization of hydrogenated castor oil into long thin fibers
,”
J. Cryst. Growth
383
,
51
56
(
2013
).
21.
Meirleir
,
N. D.
,
L.
Pellens
,
W.
Broeckx
,
G.
van Assche
, and
W. D.
Malshe
, “
The rheological properties of hydrogenated castor oil crystals
,”
Colloid Polym. Sci.
292
,
2539
2547
(
2014
).
22.
Ogunniyi
,
D. S.
, “
Castor oil: A vital industrial raw material
,”
Bioresour. Technol.
97
,
1086
1091
(
2006
).
23.
Kowalczyk
,
A.
,
C.
Oelschlaeger
, and
N.
Willenbacher
, “
Visualization of micro-scale inhomogeneities in acrylic thickener solutions: A multiple particle tracking study
,”
Polymer
58
,
170
179
(
2015
).
24.
Chaudhuri
,
P.
,
L.
Berthier
, and
W.
Kob
, “
Universal nature of particle displacements close to glass and jamming transitions
,”
Phys. Rev. Lett.
99
,
060604
(
2007
).
25.
Dibble
,
C. J.
,
M.
Kogan
, and
M. J.
Solomon
, “
Structural origins of dynamical heterogeneity in colloidal gels
,”
Phys. Rev. E
77
,
050401
(
2008
).
26.
Valentine
,
M. T.
,
P. D.
Kaplan
,
J. C.
Crocker
,
T.
Gisler
,
R. K.
Prud'homme
,
M.
Beck
, and
D. A.
Weitz
, “
Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking
,”
Phys. Rev. E
64
,
061506
(
2001
).
27.
Crocker
,
J. C.
, and
D. G.
Grier
, “
Methods of digital video microscopy for colloidal studies
,”
J. Colloid Interface Sci.
179
,
298
310
(
1996
).
28.
Mason
,
T. G.
,
K.
Ganesan
,
J. H.
van Zanten
,
D.
Wirtz
, and
S. C.
Kuo
, “
Particle tracking microrheology of complex fluids
,”
Phys. Rev. Lett.
79
,
3282
3285
(
1997
).
29.
Mason
,
T. G.
, “
Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation
,”
Rheol. Acta
39
,
371
378
(
2000
).
30.
Savin
T.
, and
P. S.
Doyle
, “
Static and dynamic errors in particle tracking microrheology
,”
Biophys. J.
88
,
623
638
(
2005
).
31.
Gittes
,
F.
,
B.
Schnurr
,
P. D.
Olmsted
,
F. C.
MacKintosh
, and
C. F.
Schmidt
, “
Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations
,”
Phys. Rev. Lett.
79
,
3286
3289
(
1997
).
32.
Mason
,
T. G.
, and
D. A.
Weitz
, “
Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids
,”
Phys. Rev. Lett.
74
,
1250
1253
(
1995
).
33.
Squires
,
T. M.
, and
T. G.
Mason
, “
Fluid mechanics of microrheology
,”
Annu. Rev. Fluid Mech.
42
,
413
438
(
2010
).
34.
Schultz
,
K. M.
, and
E. M.
Furst
, “
Microrheology of biomaterial hydrogelators
,”
Soft Matter
8
,
6198
6205
(
2012
).
35.
Schultz
,
K. M.
,
A. D.
Baldwin
,
K. L.
Kiick
, and
E. M.
Furst
, “
Capturing the comprehensive modulus profile and reverse percolation transition of a degrading hydrogel
,”
Macro Lett.
1
,
706
708
(
2012
).
36.
Waigh
,
T. A.
, “
Microrheology of complex fluids
,”
Rep. Prog. Phys.
68
,
685
742
(
2005
).
37.
Larsen
,
T. H.
, and
E. M.
Furst
, “
Microrheology of the liquid-solid transition during gelation
,”
Phys. Rev. Lett.
100
,
146001
(
2008
).
38.
Corrigan
,
A. M.
, and
A. M.
Donald
, “
Passive microrheology of solvent-induced fibrillar protein networks
,”
Langmuir
25
,
8599
8605
(
2009
).
39.
Schultz
,
K. M.
,
A. D.
Baldwin
,
K. L.
Kiick
, and
E. M.
Furst
, “
Rapid rheological screening to identify conditions of biomaterial hydrogelation
,”
Soft Matter
5
,
740
742
(
2009
).
40.
Larsen
,
T. H.
,
M. C.
Branco
,
K.
Rajagopal
,
J. P.
Schneider
, and
E. M.
Furst
, “
Sequence-dependent gelation kinetics of beta-hairpin peptide hydrogels
,”
Macromolecules
42
,
8443
8450
(
2009
).
41.
Abibnia
,
V.
, and
R. J.
Hill
, “
Universal aspects of hydrogel gelation kinetics, percolation and viscoelasticity from PA-hydrogel rheology
,”
J. Rheol.
60
,
541
548
(
2016
).
42.
Schultz
,
K. M.
, and
E. M.
Furst
, “
High-throughput rheology in a microfluidic device
,”
Lab Chip
11
,
3802
3809
(
2011
).
43.
Schultz
,
K. M.
,
A. V.
Bayles
,
A. D.
Baldwin
,
K. L.
Kiick
, and
E. M.
Furst
, “
Rapid, high resolution screening of biomaterial hydrogelators by μ2rheology
,”
Biomacromolecules
12
,
4178
4182
(
2011
).
44.
Wilkins
,
G. M. H
,
P. T.
Spicer
, and
M. J.
Solomon
, “
Colloidal system to explore structural and dynamical transitions in rod networks, gels, and glasses
,”
Langmuir
25
,
8951
8959
(
2009
).
45.
Schultz
,
K. M.
,
A. D.
Baldwin
,
K. L.
Kiick
, and
E. M.
Furst
, “
Gelation of covalently cross-linked PEG-heparin hydrogels
,”
Macromolecules
42
,
5310
5316
(
2009
).
46.
Adolf
,
D.
, and
J. E.
Martin
, “
Time-cure superposition during crosslinking
,”
Macromolecules
23
,
3700
3704
(
1990
).
47.
Corrigan
,
A. M.
, and
A. M.
Donald
, “
Particle tracking microrheology of gel-forming amyloid fibril networks
,”
Eur. Phys. J. E
28
,
457
462
(
2009
).
48.
Schultz
,
K. M.
, and
K. S.
Anseth
, “
Monitoring degradation of matrix metalloproteinases-cleavable PEG hydrogels via multiple particle tracking microrheology
,”
Soft Matter
9
,
1570
1579
(
2013
).
49.
Chambon
,
F.
, and
H. H.
Winter
, “
Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry
,”
J. Rheol.
31
,
683
697
(
1987
).
50.
Winter
,
H. H.
, and
F.
Chambon
, “
Analysis of linear viscoelasticity of a crosslinking polymer at the gel point
,”
J. Rheol.
30
,
367
382
(
1986
).
51.
Muthukumar
,
M.
, and
H. H.
Winter
, “
Fractal dimension of a crosslinking polymer at the gel point
,”
Macromolecules
19
,
1284
1285
(
1986
).
52.
Winter
,
H. H.
, “
Can the gel point of a cross-linking polymer be detected by the G′-G″ crossover?
,”
Polym. Eng. Sci.
27
,
1698
1702
(
1987
).
53.
Winter
,
H. H.
, and
M.
Mours
, “
Rheology of polymers near liquid-solid transitions
,”
Adv. Polym. Sci.
134
,
165
234
(
1997
).
54.
Stauffer
,
D.
,
A.
Coniglio
, and
M.
Adam
, “
Gelation and critical phenomena
,”
Adv. Polym. Sci.
44
,
103
158
(
1982
).
55.
Larsen
,
T. H.
,
K. M.
Schultz
, and
E. M.
Furst
, “
Hydrogel microrheology near the liquid-solid transition
,”
Korea-Aust. Rheol. J.
20
,
165
173
(
2008
).
56.
Lee
,
J. S.
,
R.
Dylla-Spears
,
N. P.
Teclemariam
, and
S. J.
Muller
, “
Microfluidic four-roll mill for all flow types
,”
Appl. Phys. Lett.
90
,
074103
(
2007
).
57.
Dylla-Spears
,
R.
,
J. E.
Townsend
,
L.
Jen-Jacobson
,
L. L.
Sohn
, and
S. J.
Muller
, “
Single-molecule sequence detection via microfluidic planar extensional flow at a stagnation point
,”
Lab Chip
10
,
1543
1549
(
2010
).
58.
Breedveld
,
V.
, and
D. J.
Pine
, “
Microrheology as a tool for high-throughput screening
,”
J. Mater. Sci.
38
,
4461
4470
(
2003
).
59.
Slopek
,
R. P.
,
H. K.
McKinley
,
C. L.
Henderson
, and
V.
Breedveld
, “
In situ monitoring of mechanical properties during photopolymerization with particle tracking microrheology
,”
Polymer
47
,
2263
2268
(
2006
).
60.
Solomon
,
M. J.
, and
P. T.
Spicer
, “
Microstructural regimes of colloidal rod suspensions, gels, and glasses
,”
Soft Matter
6
,
1391
1400
(
2010
).
61.
Harrison
,
C.
,
J. T.
Cabral
,
C. M.
Stafford
,
A.
Karim
, and
E. J.
Amis
, “
A rapid prototyping technique for the facrication of solvent-resistant structures
,”
J. Micromech. Microeng.
14
,
153
158
(
2004
).
62.
Cabral
,
J. T.
,
S. D.
Hudson
,
C.
Harrison
, and
J. F.
Douglas
, “
Frontal polymerization for microfluidic applications
,”
Langmuir
20
,
10020
10029
(
2004
).
63.
Schultz
,
K. M.
, Ph.D. thesis,
University of Delaware
,
2011
.
64.
Ng
,
J. M.
,
I.
Gitlin
,
A. D.
Stroock
, and
G. M.
Whitesides
, “
Components for integrated poly(dimethylsiloxane) microfluidic systems
,”
Electrophoresis
23
,
3461
3473
(
2002
).
65.
Whitesides
,
G. M.
, and
A. D.
Stroock
, “
Flexible methods for microfluidics
,”
Phys. Today
54
(6),
42
48
(
2001
).
66.
Abate
,
A. R.
,
D.
Lee
,
T.
Do
,
C.
Holtze
, and
D. A.
Weitz
, “
Glass coating for PDMS microfluidic channels by sol-gel methods
,”
Lab Chip
8
,
516
518
(
2008
).
67.
Bhattacharya
,
S.
,
A.
Datta
,
J. M.
Berg
, and
S.
Gangopadhay
, “
Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength
,”
J. Microelectromech. Syst.
14
,
590
597
(
2005
).
68.
Valentine
,
M. T.
,
Z. E.
Perlman
,
M. L.
Gardel
,
J. H.
Shin
,
P.
Matsudaira
,
T. J.
Mitchison
, and
D. A.
Weitz
, “
Colloid surface chemistry critically affects multiple particle tracking measurements of biomaterials
,”
Biophys. J.
86
,
4004
4014
(
2004
).
69.
Veerman
,
C.
,
K.
Rajagopal
,
C. S.
Palla
,
D. J.
Pochan
,
J. P.
Schneider
, and
E. M.
Furst
, “
Gelation kinetics of beta-hairpin peptide hydrogel networks
,”
Macromolecules
39
,
6608
6614
(
2006
).
70.
Jatav
,
S.
, and
Y. M.
Joshi
, “
Rheological signatures of gelation and effect of shear melting on aging colloidal suspension
,”
J. Rheol.
58
,
1535
1554
(
2014
).
71.
Neg
,
A. S.
,
C. G.
Redmon
,
S.
Ramakrishnan
, and
C. O.
Osuj
, “
Viscoelasticity of a colloidal gel during dynamical arrest: evolution through the critical gel and comparison with a soft colloidal glass
,”
J. Rheol.
58
,
1557
1579
(
2014
).
72.
Dasgupta
,
B. R.
,
S.
Tee
,
J. C.
Crocker
,
B. J.
Frisken
, and
D. A.
Weitz
, “
Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering
,”
Phys. Rev. E
65
,
051505
(
2002
).
73.
See supplementary material at https://doi.org/10.1122/1.4992068 for the complete bulk rheological data of HCO gelation and degradation.
74.
Mukhija
,
D.
Study of dynamics and structure of anisotropic colloidal suspensions using confocal laser scanning microscopy
, Ph.D. thesis,
University of Michigan
,
2009
.

Supplementary Material

You do not currently have access to this content.