A well-known Phan-Thien and Tanner differential viscoelastic constitutive equation has been employed to analyze the nonlinear stability and dynamics of nonisothermal film casting. A finite element method combined with stabilization techniques including discrete elastic viscous stress splitting and the streamline upwind Petrov–Galerkin method was first performed for the numerical calculation of transient film casting. Therefore, the stability analysis of film casting was carried out based on a wider parameter space of processing and the rheological properties of the polymer melt, during which the critical draw ratio for the occurrence of draw resonance (Drc) was taken as an indicator for flow stability. Unlike the results predicted by the upper-convected Maxwell model, the stabilizing region upon an upper critical draw ratio is nonexistent, while more than one peak of Drc was observed with varying aspect ratios, which was dominated by two deformation types named planar and transitional deformations, respectively. Our simulation results show that elongational rheological behavior plays a dominant role in the stability of flow for both extensional-thickening and extensional-thinning fluids, while the effects of processing parameters such as extrusion rate and cooling and rheological parameters such as relaxation time on Drc all can be attributed to elongational viscosity.

1.
Lamberti
,
G.
,
G.
Titomanlio
, and
V.
,
Brucato
, “
Measurement and modelling of the film casting process: 2. Temperature distribution along draw direction
,”
Chem. Eng. Sci.
57
,
1993
1996
(
2002
).
2.
Sollogoub
,
C.
,
Y.
Demay
, and
J. F.
Agassant
, “
Cast film problem: A non isothermal investigation
,”
Int. Polym. Process.
18
,
80
86
(
2003
).
3.
Sollogoub
,
C.
,
Y.
Demay
, and
J. F.
Agassant
, “
Non-isothermal viscoelastic numerical model of the cast-film process
,”
J. Non-Newtonian Fluid Mech.
138
,
76
86
(
2006
).
4.
Zavinska
,
O.
,
J.
Claracq
, and
S.
van Eijndhoven
, “
Non-isothermal film casting: Determination of draw resonance
,”
J. Non-Newtonian Fluid Mech.
151
,
21
29
(
2008
).
5.
Smith
,
S.
, and
D.
Stolle
, “
Nonisothermal two-dimensional film casting of a viscous polymer
,”
Polym. Eng. Sci.
40
,
1870
1877
(
2000
).
6.
Barq
,
P.
,
J. M.
Haudin
,
J. F.
Agassant
,
H.
Roth
, and
P.
Bourgin
, “
Instability phenomena in film casting process
,”
Int. Polym. Process.
5
,
264
271
(
1990
).
7.
Beaulne
,
M.
, and
E.
Mitsoulis
, “
Numerical simulation of the film casting process
,”
Int. Polym. Process.
14
,
261
275
(
1999
).
8.
Silagy
,
D.
,
Y.
Demay
, and
J. F.
Agassant
, “
Numerical simulation of the film casting process
,”
Int. J. Numer. Methods Fluids
30
,
1
18
(
1999
).
9.
Ito
,
H.
,
M.
Doi
,
T.
Isaki
, and
M.
Takeo
, “
A model of neck-in phenomenon in film casting process
,”
J. Soc. Rheol., Jpn.
31
,
157
163
(
2003
).
10.
Smith
,
S.
, and
D.
Stolle
, “
Numerical simulation of film casting using an updated lagrangian finite element algorithm
,”
Polym. Eng. Sci.
43
,
1105
1122
(
2003
).
11.
Hagen
,
T.
, “
On the membrane approximation in isothermal film casting
,”
Z. Angew. Math. Phys.
65
,
729
745
(
2014
).
12.
Shiromoto
,
S.
, “
The mechanism of neck-in phenomenon in film casting process
,”
Int. Polym. Process.
29
,
197
206
(
2014
).
13.
Dobroth
,
T.
, and
L.
Erwin
, “
Causes of edge beads in cast films
,”
Polym. Eng. Sci.
26
,
462
467
(
1986
).
14.
Anturkar
,
N. R.
, and
A.
Co
, “
Draw resonance in film casting of viscoelastic fluids: A linear stability analysis
,”
J. Non-Newtonian Fluid Mech.
28
,
287
307
(
1988
).
15.
Canning
,
K.
, and
A.
Co
, “
Edge effects in film casting of molten polymers
,”
J. Plast. Film Sheeting
16
,
188
203
(
2000
).
16.
Pol
,
H. V.
,
S. S.
Thete
,
P.
Doshi
, and
A. K.
Lele
, “
Necking in extrusion film casting: The role of macromolecular architecture
,”
J. Rheol.
57
,
559
583
(
2013
).
17.
Jung
,
H. W.
,
J. S.
Lee
, and
J. C.
Hyun
, “
Sensitivity analysis of melt spinning process by frequency response
,”
Korea-Australia Rheol. J.
14
,
57
62
(
2002
).
18.
Kim
,
B. M.
,
J. C.
Hyun
,
J. S.
Oh
, and
S. J.
Lee
, “
Kinematic waves in the isothermal melt spinning of Newtonian fluids
,”
AIChE J.
42
,
3164
3169
(
1996
).
19.
Lee
,
J. S.
,
H. W.
Jung
,
S. H.
Kim
, and
J. C.
Hyun
, “
Effect of fluid viscoelasticity on the draw resonance dynamics of melt spinning
,”
J. Non-Newtonian Fluid Mech.
99
,
159
166
(
2001
).
20.
van der Walt
,
C.
,
M. A.
Hulsen
,
A. C. B.
Bogaerds
,
H. E. H.
Meijer
, and
M. J. H.
Bulters
, “
Stability of fiber spinning under filament pull-out conditions
,”
J. Non-Newtonian Fluid Mech.
175
,
25
37
(
2012
).
21.
Fleissner
,
M.
, “
Elongational flow of HDPE samples and bubble instability in film blowing
,”
Int. Polym. Process.
2
,
229
233
(
1988
).
22.
Laffargue
,
J.
,
L.
Parent
,
P. G.
Lafleur
,
P. J.
Carreau
,
Y.
Demay
, and
J. F.
Agassant
, “
Investigation of bubble instabilities in film blowing process
,”
Int. Polym. Process.
17
,
347
353
(
2002
).
23.
Yeow
,
Y. L.
, “
On the stability of extending films: A model for the film casting process
,”
J. Fluid Mech.
66
,
613
622
(
1974
).
24.
Iyengar
,
V. R.
, and
A.
Co
, “
Film casting of a modified Giesekus fluid: Stability analysis
,”
Chem. Eng. Sci.
51
,
1417
1430
(
1996
).
25.
PisLopez
,
M. E.
, and
A.
Co
, “
Multilayer film casting of modified Giesekus fluids. 2. Linear stability analysis
,”
J. Non-Newtonian Fluid Mech.
66
,
95
114
(
1996
).
26.
Fisher
,
R. J.
, and
M. M.
Denn
, “
Finite-amplitude stability and draw resonance in isothermal melt spinning
,”
Chem. Eng. Sci.
30
,
1129
1134
(
1975
).
27.
Barq
,
P.
,
J. M.
Haudin
,
J. F.
Agassant
, and
P.
Bourgin
, “
Stationary and dynamic analysis of film casting process
,”
Int. Polym. Process.
9
,
350
358
(
1994
).
28.
D.
,
Silagy
,
Y.
Demay
, and
J. F.
Agassant
, “
Study of the stability of the firm casting process
,”
Polym. Eng. Sci.
36
,
2614
2625
(
1996
).
29.
Silagy
,
D.
,
Y.
Demay
, and
J. F.
Agassant
, “
Stationary and stability analysis of the film casting process
,”
J. Non-Newtonian Fluid Mech.
79
,
563
583
(
1998
).
30.
Lee
,
J. S.
,
H. W.
Jung
,
H. S.
Song
,
K. Y.
Lee
, and
J. C.
Hyun
, “
Kinematic waves and draw resonance in film casting process
,”
J. Non-Newtonian Fluid Mech.
101
,
43
54
(
2001
).
31.
F.
,
Cao
,
R. E.
Khayat
, and
J. E.
Puskas
, “
Effect of inertia and gravity on the draw resonance in high-speed film casting of Newtonian fluids
,”
Int. J. Solids Struct.
42
,
5734
5757
(
2005
).
32.
Shin
,
D. M.
,
J. S.
Lee
,
J. M.
Kim
,
H. W.
Jung
, and
J. C.
Hyun
, “
Transient and steady-state solutions of 2D viscoelastic nonisothermal simulation model of film casting process via finite element method
,”
J. Rheol.
51
,
393
407
(
2007
).
33.
Ahmed
,
Z. U.
, and
R. E.
Khayat
, “
Three dimensional film stability and draw resonance
,”
J. Fluids Eng.
134
,
101302
(
2012
).
34.
Shiromoto
,
S.
,
Y.
Masutani
,
M.
Tsutsubuchi
,
Y.
,
Togawa
, and
T.
,
Kajiwara
, “
The effect of viscoelasticity on the extrusion drawing in film-casting process
,”
Rheol. Acta
49
,
757
767
(
2010
).
35.
Lee
,
J. S.
,
H. W.
Jung
, and
J. C.
Hyun
, “
Stabilization of film casting by an encapsulation extrusion method
,”
J. Non-Newtonian Fluid Mech.
117
,
109
115
(
2004
).
36.
Kwon
,
I.
,
H. W.
Jung
, and
J. C.
Hyun
, “
Stability windows for draw resonance instability in two-dimensional Newtonian and viscoelastic film casting processes by transient frequency response method
,”
J. Non-Newtonian Fluid Mech.
240
,
34
43
(
2017
).
37.
Kim
,
J. M.
,
J. S.
Lee
,
D. M.
Shin
,
H. W.
Jung
, and
J. C.
Hyun
, “
Transient solutions of the dynamics of film casting process using a 2-D viscoelastic model
,”
J. Non-Newtonian Fluid Mech.
132
,
53
60
(
2005
).
38.
McLeish
,
T. C. B.
, and
R. G.
Larson
, “
Molecular constitutive equations for a class of branched polymers: The pom-pom polymer
,”
J. Rheol.
42
,
81
110
(
1998
).
39.
Verbeeten
,
W. M. H.
,
G. W. M.
Peters
, and
F. P. T.
Baaijens
, “
Differential constitutive equations for polymer melts: The extended Pom–Pom model
,”
J. Rheol.
45
,
823
843
(
2001
).
40.
Barborik
,
T.
, and
M.
Zatloukal
, “
Effect of viscoelastic stress state at die exit on extrusion film casting process: Theoretical study
,”
AIP Conf. Proc.
1662
,
030013
(
2015
).
41.
d'Halewyu
,
S.
,
J. F.
Agassant
, and
Y.
Demay
, “
Numerical simulation of the cast film process
,”
Polym. Eng. Sci.
30
,
335
340
(
1990
).
42.
Guénette
,
R.
, and
M.
Fortin
, “
A new mixed finite element method for computing viscoelastic flows
,”
J. Non-Newtonian Fluid Mech.
60
,
27
52
(
1995
).
43.
Brooks
,
A. N.
, and
T. J. R.
Hughes
, “
Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations
,”
Comput. Methods Appl. Mech. Eng.
32
,
199
259
(
1982
).
44.
Marchal
,
J. M.
, and
M. J.
Crochet
, “
A new mixed finite element for calculating viscoelastic flow
,”
J. Non-Newtonian Fluid Mech.
26
,
77
114
(
1987
).
45.
Baaijens
,
F. P. T.
, “
Mixed finite element methods for viscoelastic flow analysis: A review
,”
J. Non-Newtonian Fluid Mech.
79
,
361
385
(
1998
).
46.
Manero
,
O.
,
F.
Bautista
,
J. F. A.
Soltero
, and
J. E.
Puig
, “
Dynamics of worm-like micelles: the Cox–Merz rule
,”
J. Non-Newtonian Fluid Mech.
106
,
1
15
(
2002
).
47.
Lee
,
J. S.
,
D. M.
Shin
,
H. W.
Jung
, and
J. C.
Hyun
, “
Transient solutions of the dynamics in low-speed fiber spinning process accompanied by flow-induced crystallization
,”
J. Non-Newtonian Fluid Mech.
130
,
110
116
(
2005
).
48.
Walters
,
K.
, and
M. F.
Webster
, “
The distinctive CFD challenges of computational rheology
,”
Int. J. Numer. Methods Fluids
43
,
577
596
(
2003
).
49.
Béraudo
,
C.
,
A.
Fortin
,
T.
Coupez
,
Y.
Demay
,
B.
Vergnes
, and
J. F.
Agassant
, “
A finite element method for computing the flow of multi-mode viscoelastic fluids: Comparison with experiments
,”
J. Non-Newtonian Fluid Mech.
75
,
1
23
(
1998
).
50.
See supplementary material at http://dx.doi.org/10.1122/1.5009198 for the video of flow instability (draw resonance and edge-bead) and three-dimensional (3D) phase space trajectory. Additionally, the supporting information mentioned in the discussion section is also provided in the supplemental text material.
51.
Phan-Thien
,
N.
, “
A nonlinear network viscoelastic model
,”
J. Rheol.
22
,
259
283
(
1978
).
52.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
53.
Thien
,
N. P.
, and
R. I.
Tanner
, “
A new constitutive equation derived from network theory
,”
J. Non-Newtonian Fluid Mech.
2
,
353
365
(
1977
).
54.
Satoh
,
N.
,
H.
Tomiyama
, and
T.
Kajiwara
, “
Viscoelastic simulation of film casting process for a polymer melt
,”
Polym. Eng. Sci.
41
,
1564
1579
(
2001
).
55.
Demay
,
Y.
, and
J. F.
Agassant
, “
An overview of molten polymer drawing instabilities
,”
Int. Polym. Process.
29
,
128
139
(
2014
).

Supplementary Material

You do not currently have access to this content.