The crystallization of a polymer melt is characterized by dramatic structural and mechanical changes that significantly impact the processing conditions used to generate industrially relevant products. Relationships between crystallinity and rheology are necessary to simulate and monitor the effect of processing conditions on the properties of the final product. However, separate measurements of crystallinity and rheology are difficult to correlate due to differences in sample history, geometry, and temperature. Recently, we have developed a rheo-Raman microscope for simultaneous rheology, Raman spectroscopy, and polarized reflection-mode optical measurements of soft materials, which allows for quantitative crystallinity measurements through features in the Raman spectrum. In this work, we apply this technique to monitor the isothermal crystallization of polycaprolactone to probe the relationship between structure, crystallinity, and rheology. Both crystallinity and the shear modulus vary over comparable timescales, but the birefringence increases much earlier in the crystallization process. We directly plot rheological parameters as a function of crystallinity to probe a range of suspension-based and empirical models relating the complex modulus to crystallinity, and we find that the previously developed models cannot describe the crystallinity-modulus relationship over the crystallization process. By developing a suspension-based model, we can fit the complex modulus over the crystallization range. The crystallization process is characterized by a critical percolation fraction and a single scaling exponent.

1.
Piorkowska
,
E.
, and
G. C.
Rutledge
,
Handbook of Polymer Crystallization
(
John Wiley & Sons
,
NJ
,
2013
).
2.
Janeschitz-Kriegl
,
H.
,
Crystallization Modalities in Polymer Melt Processing: Fundamental Aspects of Structure Formation
(
Springer Science & Business Media
,
New York
,
2009
).
3.
Gibson
,
I.
,
W. B.
Rosen
, and
B.
Stucker
,
Additive Manufacturing Technologies
(
Springer
,
New York, NY
,
2010
).
4.
Lamberti
,
G.
,
G.
Peters
, and
G.
Titomanlio
, “
Crystallinity and linear rheological properties of polymers
,”
Int. Polym. Process.
22
,
303
310
(
2007
).
5.
Gauthier
,
C.
,
J.-F.
Chailan
, and
J.
Chauchard
, “
Utilisation de l'analyse viscoélastique dynamique à l'étude de la cristallisation isotherme du poly(téréphtalate d'ethylène) amorphe. Application à des composites unidirectionnels avec fibres de verre
,”
Die Makromol. Chem.
193
,
1001
1009
(
1992
).
6.
Carrot
,
C.
,
J.
Guillet
, and
K.
Boutahar
, “
Rheological behavior of a semi-crystalline polymer during isothermal crystallization
,”
Rheol. Acta
32
,
566
574
(
1993
).
7.
Khanna
,
Y. P.
, “
Rheological mechanism and overview of nucleated crystallization kinetics
,”
Macromolecules
26
,
3639
3643
(
1993
).
8.
Coppola
,
S.
,
S.
Acierno
,
N.
Grizzuti
, and
D.
Vlassopoulos
, “
Viscoelastic behavior of semicrystalline thermoplastic polymers during the early stages of crystallization
,”
Macromolecules
39
,
1507
1514
(
2006
).
9.
Zhang
,
Q.
,
D. R.
Lippits
, and
S.
Rastogi
, “
Dispersion and rheological aspects of SWNTs in ultrahigh molecular weight polyethylene
,”
Macromolecules
39
,
658
666
(
2006
).
10.
Ning
,
N.-Y.
,
Q.-J.
Yin
,
F.
Luo
,
Q.
Zhang
,
R.
Du
, and
Q.
Fu
, “
Crystallization behavior and mechanical properties of polypropylene/halloysite composites
,”
Polymer
48
,
7374
7384
(
2007
).
11.
Alig
,
I.
,
S.
Tadjbakhsch
,
G.
Floudas
, and
C.
Tsitsilianis
, “
Viscoelastic contrast and kinetic frustration during poly(ethylene oxide) crystallization in a homopolymer and a triblock copolymer. Comparison of ultrasonic and low-frequency rheology
,”
Macromolecules
31
,
6917
6925
(
1998
).
12.
Pogodina
,
N. V.
,
H. H.
Winter
, and
S.
Srinivas
, “
Strain effects on physical gelation of crystallizing isotactic polypropylene
,”
J. Polym. Sci., Part B: Polym. Phys.
37
,
3512
3519
(
1999
).
13.
Tanner
,
R. I.
, “
On the flow of crystallizing polymers: I. Linear regime
,”
J. Non-Newtonian Fluid Mech.
112
,
251
268
(
2003
).
14.
Steenbakkers
,
R. J. A.
, and
G. W. M.
Peters
, “
Suspension-based rheological modeling of crystallizing polymer melts
,”
Rheol. Acta
47
,
643
665
(
2008
).
15.
Christensen
,
R. M.
, and
K. H.
Lo
, “
Solutions for effective shear properties in three phase sphere and cylinder models
,”
J. Mech. Phys. Solids
27
,
315
330
(
1979
).
16.
Christensen
,
R. M.
, and
K. H.
Lo
, “
Erratum: Solutions for effective shear properties in three phase sphere and cylinder models
,”
J. Mech. Phys. Solids
34
,
639
(
1986
).
17.
Housmans
,
J.-W.
,
R. J. A.
Steenbakkers
,
P. C.
Roozemond
,
G. W. M.
Peters
, and
H. E. H.
Meijer
, “
Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene
,”
Macromolecules
42
,
5728
5740
(
2009
).
18.
Roozemond
,
P. C.
,
V.
Janssens
,
P.
Van Puyvelde
, and
G. W. M.
Peters
, “
Suspension-like hardening behavior of HDPE and time-hardening superposition
,”
Rheol. Acta
51
,
97
109
(
2012
).
19.
Pogodina
,
N. V.
, and
H. H.
Winter
, “
Polypropylene crystallization as a physical gelation process
,”
Macromolecules
31
,
8164
8172
(
1998
).
20.
Titomanlio
,
G.
,
V.
Speranza
, and
V.
Brucato
, “
On the simulation of thermoplastic injection moulding process
,”
Int. Polym. Process.
12
,
45
53
(
1997
).
21.
Boutahar
,
K.
,
C.
Carrot
, and
J.
Guillet
, “
Crystallization of polyolefins from rheological measurementsrelation between the transformed fraction and the dynamic moduli
,”
Macromolecules
31
,
1921
1929
(
1998
).
22.
Acierno
,
S.
,
E.
Di Maio
,
S.
Iannace
, and
N.
Grizzuti
, “
Structure development during crystallization of polycaprolactone
,”
Rheol. Acta
45
,
387
392
(
2006
).
23.
Lellinger
,
D.
,
G.
Floudas
, and
I.
Alig
, “
Shear induced crystallization in poly(ε-caprolactone): Effect of shear rate
,”
Polymer
44
,
5759
5769
(
2003
).
24.
Pogodina
,
N. V.
,
V. P.
Lavrenko
,
S.
Srinivas
, and
H. H.
Winter
, “
Rheology and structure of isotactic polypropylene near the gel point: Quiescent and shear-induced crystallization
,”
Polymer
42
,
9031
9043
(
2001
).
25.
Mandelkern
,
L.
,
Crystallization of Polymers: Volume 2, Kinetics and Mechanisms
(
Cambridge University
,
New York
,
2004
).
26.
Derakhshandeh
,
M.
,
A. K.
Doufas
, and
S. G.
Hatzikiriakos
, “
Quiescent and shear-induced crystallization of polypropylenes
,”
Rheol. Acta
53
,
519
535
(
2014
).
27.
Pantani
,
R.
,
V.
Speranza
, and
G.
Titomanlio
, “
Simultaneous morphological and rheological measurements on polypropylene: Effect of crystallinity on viscoelastic parameters
,”
J. Rheol.
59
,
377
390
(
2015
).
28.
Kumaraswamy
,
G.
,
R. K.
Verma
, and
J. A.
Kornfield
, “
Novel flow apparatus for investigating shear-enhanced crystallization and structure development in semicrystalline polymers
,”
Rev. Sci. Instrum.
70
,
2097
2104
(
1999
).
29.
Ratzsch
,
K.-F.
,
C.
Friedrich
, and
M.
Wilhelm
, “
Low-field rheo-NMR: A novel combination of NMR relaxometry with high end shear rheology
,”
J. Rheol.
61
,
905
917
(
2017
).
30.
Janssens
,
V.
,
C.
Block
,
G.
Van Assche
,
B.
Van Mele
, and
P.
Van Puyvelde
, “
RheoDSC: Design and validation of a new hybrid measurement technique
,”
J. Therm. Anal. Calorim.
98
,
675
681
(
2009
).
31.
Schmidt-Rohr
,
K.
, and
H. W.
Spiess
, “
Chain diffusion between crystalline and amorphous regions in polyethylene detected by 2D exchange carbon-13 NMR
,”
Macromolecules
24
,
5288
5293
(
1991
).
32.
Migler
,
K. B.
,
A. P.
Kotula
, and
A. R.
Hight Walker
, “
Trans-rich structures in early stage crystallization of polyethylene
,”
Macromolecules
48
,
4555
4561
(
2015
).
33.
Kotula
,
A. P.
,
M.
Meyer
,
F.
de Vito
,
J. P.
Plog
,
A. R.
Hight Walker
, and
K. B.
Migler
, “
The rheo-Raman microscope: Simultaneous chemical, conformational, mechanical, and microstructural measures of soft materials
,”
Rev. Sci. Instrum.
87
,
105105
(
2016
).
34.
Amin
,
S.
,
S.
Blake
,
S. M.
Kenyon
,
R. C.
Kennel
, and
E. N.
Lewis
, “
A novel combination of DLS-optical microrheology and low frequency Raman spectroscopy to reveal underlying biopolymer self-assembly and gelation mechanisms
,”
J. Chem. Phys.
141
,
234201
(
2014
).
35.
Chevrel
,
M.-C.
,
S.
Hoppe
,
L.
Falk
,
B.
Nadège
,
D.
Chapron
,
P.
Bourson
, and
A.
Durand
, “
Rheo-Raman: A Promising technique for in situ monitoring of polymerization reactions in solution
,”
Ind. Eng. Chem. Res.
51
,
16151
16156
(
2012
).
36.
Farquharson
,
S.
,
J.
Carignan
,
V.
Khitrov
,
A.
Senador
, and
M.
Shaw
, “
Development of a phase diagram to control composite manufacturing using Raman spectroscopy
,” Providence, RI, March 8,
2004
.
37.
Kotula
,
A. P.
,
C. R.
Snyder
, and
K. B.
Migler
, “
Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy
,”
Polymer
117
,
1
10
(
2017
).
38.
Woodruff
,
M. A.
, and
D. W.
Hutmacher
, “
The return of a forgotten polymer—Polycaprolactone in the 21st century
,”
Prog. Polym. Sci.
35
,
1217
1256
(
2010
).
39.
Lebedev
,
B.
, and
A.
Yevstropov
, “
Thermodynamic properties of polylactones
,”
Die Makromol. Chem.
185
,
1235
1253
(
1984
).
40.
Huang
,
Y.
,
Z.
Xu
,
Y.
Huang
,
D.
Ma
,
J.
Yang
, and
J.
Mays
, “
Characterization of poly(ε-Caprolactone) via size exclusion chromatography with online right-angle laser-light scattering and viscometric detectors
,”
Int. J. Polym. Anal. Charact.
8
,
383
394
(
2003
).
41.
See Supplementary material at https://doi.org/10.1122/1.5008381 for additional information on strain sweep measurements, Avrami analysis and polarized optical images of the crystallization process, coefficients for Eq. (7), additional modulus-crystallinity curves for Eq. (15), and fits of Eq. (16) to additional modulus-crystallinity measurements.
42.
Crist
,
B.
, and
F. M.
Mirabella
, “
Crystal thickness distributions from melting homopolymers or random copolymers
,”
J. Polym. Sci. Part B: Polym. Phys.
37
,
3131
3140
(
1999
).
43.
Winter
,
H. H.
,
P.
Morganelli
, and
F.
Chambon
, “
Stoichiometry effects on rheology of model polyurethanes at the gel point
,”
Macromolecules
21
,
532
535
(
1988
).
44.
Chynoweth
,
K. R.
, and
Z. H.
Stachurski
, “
Crystallization of poly(ε-caprolactone)
,”
Polymer
27
,
1912
1916
(
1986
).
45.
Cotugno
,
S.
,
E.
Di Maio
,
C.
Ciardiello
,
S.
Iannace
,
G.
Mensitieri
, and
L.
Nicolais
, “
Sorption thermodynamics and mutual diffusivity of carbon dioxide in molten polycaprolactone
,”
Ind. Eng. Chem. Res.
42
,
4398
4405
(
2003
).
46.
Voigt
,
W.
,
Lehrbuch der Kristallphysik (Mit Ausschluss der Kristalloptik)
(
Springer-Verlag
,
Germany
,
1928
).
47.
Hill
,
R.
, “
The elastic behaviour of a crystalline aggregate
,”
Proc. Phys. Soc., London, Sect. A
65
,
349
354
(
1952
).
48.
Reuss
,
A.
, “
Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle
,”
Z. Angew. Math. Mech.
9
,
49
58
(
1929
).
49.
Kinloch
,
A. J.
,
Fracture Behaviour of Polymers
(
Springer Science & Business Media
,
New York
,
1983
).
50.
Fang
,
H.
,
Q.
Xie
,
H.
Wei
,
P.
Xu
, and
Y.
Ding
, “
Physical gelation and macromolecular mobility of sustainable polylactide during isothermal crystallization
,”
J. Polym. Sci., Part B: Polym. Phys.
55
,
1235
1244
(
2017
).
51.
Gray
,
R. W.
, and
N. G.
McCrum
, “
Origin of the γ relaxations in polyethylene and polytetrafluoroethylene
,”
J. Polym. Sci., Part A-2: Polym. Phys.
7
,
1329
1355
(
1969
).
52.
Morawiec
,
A.
, “
Calculation of polycrystal elastic constants from single-crystal data
,”
Phys. Status Solidi B
154
,
535
541
(
1989
).
53.
Tschoegl
,
N. W.
,
The Phenomenological Theory Of Linear Viscoelastic Behavior: An Introduction
(
Springer Science & Business Media
,
New York
,
2012
).
54.
Lee
,
E.
, “
Stress analysis in visco-elastic bodies
,”
Q. Appl. Math.
13
,
183
190
(
1955
).
55.
Beaton
,
A. E.
, and
J. W.
Tukey
, “
The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data
,”
Technometrics
16
,
147
185
(
1974
).
56.
Hashin
,
Z.
, “
Analysis of composite materials—A survey
,”
J. Appl. Mech.
50
,
481
505
(
1983
).
57.
Christensen
,
R. M.
, “
Viscoelastic properties of heterogeneous media
,”
J. Mech. Phys. Solids
17
,
23
41
(
1969
).
58.
Tanner
,
R. I.
, “
A suspension model for low shear rate polymer solidification
,”
J. Non-Newtonian Fluid Mech.
102
,
397
408
(
2002
).
59.
Metzner
,
A. B.
, “
Rheology of suspensions in polymeric liquids
,”
J. Rheol.
29
,
739
775
(
1985
).
60.
Bicerano
,
J.
,
J. F.
Douglas
, and
D. A.
Brune
, “
Model for the viscosity of particle dispersions
,”
J. Macromol. Sci., Part C: Polym. Rev.
39
,
561
642
(
1999
).
61.
Chong
,
J. S.
,
E. B.
Christiansen
, and
A. D.
Baer
, “
Rheology of concentrated suspensions
,”
J. Appl. Polym. Sci.
15
,
2007
2021
(
1971
).
62.
Douglas
,
J. F.
, and
E. J.
Garboczi
, “
Intrinsic viscosity and the polarizability of particles having a wide range of shapes
,”
Adv. Chem. Phys.
91
,
85
154
(
1995
).
63.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University
,
New York
,
2012
).
64.
Krieger
,
I. M.
, and
T. J.
Dougherty
, “
A mechanism for non-Newtonian flow in suspensions of rigid spheres
,”
Trans. Soc. Rheol.
3
,
137
152
(
1959
).
65.
Maron
,
S. H.
, and
P. E.
Pierce
, “
Application of ree-eyring generalized flow theory to suspensions of spherical particles
,”
J. Colloid Sci.
11
,
80
95
(
1956
).
66.
Quemada
,
D.
, “
Rheology of concentrated disperse systems and minimum energy dissipation principle
,”
Rheol. Acta
16
,
82
94
(
1977
).
67.
Russel
,
W. B.
, and
P. R.
Sperry
, “
Effect of microstructure on the viscosity of hard sphere dispersions and modulus of composites
,”
Prog. Org. Coat.
23
,
305
324
(
1994
).
68.
Mills
,
N. J.
, “
The rheology of filled polymers
,”
J. Appl. Polym. Sci.
15
,
2791
2805
(
1971
).
69.
Garboczi
,
E. J.
, and
J. F.
Douglas
, “
Intrinsic conductivity of objects having arbitrary shape and conductivity
,”
Phys. Rev. E
53
,
6169
6180
(
1996
).
70.
Roberts
,
A. P.
, and
E. J.
Garboczi
, “
Computation of the linear elastic properties of random porous materials with a wide variety of microstructure
,”
Proc. R. Soc. London, Ser. A
458
,
1033
1054
(
2002
).
71.
McLachlan
,
D. S.
,
M.
Blaszkiewicz
, and
R. E.
Newnham
, “
Electrical resistivity of composites
,”
J. Am. Ceram. Soc.
73
,
2187
2203
(
1990
).
72.
Boyd
,
R. H.
, “
Relaxation processes in crystalline polymers: Experimental behaviour—A review
,”
Polymer
26
,
323
347
(
1985
).
73.
Parkhouse
,
J. G.
, and
A.
Kelly
, “
The random packing of fibres in three dimensions
,”
Proc. R. Soc. London, Ser. A
451
,
737
746
(
1995
), Vol. 150.
74.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
New York
,
1999
), Vol. 150.
75.
Takayanagi
,
M.
,
S.
Uemura
, and
S.
Minami
, “
Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer
,”
J. Polym. Sci., Part C: Polym. Symp.
5
,
113
122
(
1964
).
76.
Martin
,
J. E.
, and
D.
Adolf
, “
The sol-gel transition in chemical gels
,”
Annu. Rev. Phys. Chem.
42
,
311
339
(
1991
).
77.
Holly
,
E. E.
,
S. K.
Venkataraman
,
F.
Chambon
, and
H.
Henning Winter
, “
Fourier transform mechanical spectroscopy of viscoelastic materials with transient structure
,”
J. Non-Newtonian Fluid Mech.
27
,
17
26
(
1988
).
78.
Acierno
,
S.
, and
N.
Grizzuti
, “
Measurements of the rheological behavior of a crystallizing polymer by an ‘inverse quenching’ technique
,”
J. Rheol.
47
,
563
576
(
2003
).

Supplementary Material

You do not currently have access to this content.